Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital X-ray microtomography yields stunning views of limb regeneration

23.01.2003


Employing high-tech, digital X-ray microtomography (microCT), Northwestern University scientists have discovered the way in which newts form new bone and cartilage during limb regeneration. Newts are a type of salamander, the only vertebrates capable of rebuilding lost structures such as limbs throughout their lifetimes.



Reporting in the January issue of Developmental Dynamics, Northwestern researchers Hans-Georg Simon and Stuart Stock showed that bone formation in a regenerated forelimb combines elements of embryonic development and of adult wound healing.

Results of their research, which have not been observed before in other studies, may have implications for replacement of limb parts missing from injury or birth defects, and, ultimately, for growing new tissue from parts of organs such as livers.


Simon is assistant professor of pediatrics at the Feinberg School of Medicine at Northwestern University and a developmental biologist at the Children’s Memorial Institute for Education and Research. Stock is research professor at the Feinberg School and a material scientist at the Institute for Bioengineering and Nanoscience in Advanced Medicine at Northwestern University.

MicroCT shows promise for detecting and characterizing soft tissue structures, skeletal abnormalities and tumors in live animals, Stock said. It provides high-resolution images (typically 25 micrometers or less) and rapid data acquisition (5 to 30 minutes).

"MicroCT data sets show us how mineral is distributed within bones," he said. "Mineral distribution affects the susceptibility of bone to fracture, for example, a major concern in osteoporosis."

"Because the structure of a given bone varies greatly between individuals, changes in bone are seen most clearly if the same volume of tissue is examined noninvasively at different points in time. This is what microCT is able to do," Stock said.

In the study reported in Developmental Dynamics, microCT allowed scientists to observe microscopic changes inside the regenerating forelimbs without dissecting the tissue as it is done in conventional analyses.

"Scientists previously thought that regeneration progressed in a continuous directional manner, from the amputation site to the farthest distal point," said Simon.

The Northwestern researchers found that although to the naked eye the limb appeared to regenerate from the amputation site at the upper arm to the fingertips, when they examined the mineral formation in the forming bones via microCT, they found that bone formation did not occur in the same order.

"With this microCT method, we can see things other people probably have missed in previous years," said Simon.

"Although the cartilage developed into bone in the lower limb arm from the elbow joint down to the fingers, when we zoom in on at the amputation site in the upper part of the limb arm it looks pretty similar to a normal fracture. There is a gap where bone has not yet formed, between the cut side and the new regenerated limb, which resembles normal wound healing," he said.

Using this new microCT imaging, Simon and Stock will be able to conduct further studies on regeneration. In a recent article (Developmental Biology, August 2002), Simon showed that different regulatory gene mechanisms are in force during regeneration, indicating that regeneration is not simply a reiteration of developmental gene programs.

While the same genes are employed as during embryonic development, the new studies provide additional evidence that during regeneration, several genes are regulated in a different manner.

"We are making the first baby steps to just be able to see the process," said Simon.

"Now we can watch the process of rebuilding a limb over time in one living animal, see what these genes are doing and how they instruct the growth of news structures such as cartilage and bone," he said.

Stock added, "In fact, if we do microCT at a synchrotron radiation source such as that at the Argonne National Laboratory, we have resolution 2 micrometers or less and can see details at the cellular level. The real challenge is to recognize important information contained in the Gigbytes of microCT data we produce.

"Regeneration is the most complete repair mechanism there is. If we can develop a non-invasive experimental model system using microCT, we can learn a great deal about this process, which is directly related to wound healing and repairing of broken bones in the clinic," Simon said.

"Regenerating newt cells are similar to activated stem cells. However, what makes them special is that they contain a complete blueprint of the biological structure they have to rebuild." he said.

Elizabeth Crown and Ellen Hunt | EurekAlert!
Further information:
http://www.nwu.edu/
http://www3.interscience.wiley.com/cgi-bin/fulltext/102523340/FILE?TPL=ftx_start

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>