Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital X-ray microtomography yields stunning views of limb regeneration

23.01.2003


Employing high-tech, digital X-ray microtomography (microCT), Northwestern University scientists have discovered the way in which newts form new bone and cartilage during limb regeneration. Newts are a type of salamander, the only vertebrates capable of rebuilding lost structures such as limbs throughout their lifetimes.



Reporting in the January issue of Developmental Dynamics, Northwestern researchers Hans-Georg Simon and Stuart Stock showed that bone formation in a regenerated forelimb combines elements of embryonic development and of adult wound healing.

Results of their research, which have not been observed before in other studies, may have implications for replacement of limb parts missing from injury or birth defects, and, ultimately, for growing new tissue from parts of organs such as livers.


Simon is assistant professor of pediatrics at the Feinberg School of Medicine at Northwestern University and a developmental biologist at the Children’s Memorial Institute for Education and Research. Stock is research professor at the Feinberg School and a material scientist at the Institute for Bioengineering and Nanoscience in Advanced Medicine at Northwestern University.

MicroCT shows promise for detecting and characterizing soft tissue structures, skeletal abnormalities and tumors in live animals, Stock said. It provides high-resolution images (typically 25 micrometers or less) and rapid data acquisition (5 to 30 minutes).

"MicroCT data sets show us how mineral is distributed within bones," he said. "Mineral distribution affects the susceptibility of bone to fracture, for example, a major concern in osteoporosis."

"Because the structure of a given bone varies greatly between individuals, changes in bone are seen most clearly if the same volume of tissue is examined noninvasively at different points in time. This is what microCT is able to do," Stock said.

In the study reported in Developmental Dynamics, microCT allowed scientists to observe microscopic changes inside the regenerating forelimbs without dissecting the tissue as it is done in conventional analyses.

"Scientists previously thought that regeneration progressed in a continuous directional manner, from the amputation site to the farthest distal point," said Simon.

The Northwestern researchers found that although to the naked eye the limb appeared to regenerate from the amputation site at the upper arm to the fingertips, when they examined the mineral formation in the forming bones via microCT, they found that bone formation did not occur in the same order.

"With this microCT method, we can see things other people probably have missed in previous years," said Simon.

"Although the cartilage developed into bone in the lower limb arm from the elbow joint down to the fingers, when we zoom in on at the amputation site in the upper part of the limb arm it looks pretty similar to a normal fracture. There is a gap where bone has not yet formed, between the cut side and the new regenerated limb, which resembles normal wound healing," he said.

Using this new microCT imaging, Simon and Stock will be able to conduct further studies on regeneration. In a recent article (Developmental Biology, August 2002), Simon showed that different regulatory gene mechanisms are in force during regeneration, indicating that regeneration is not simply a reiteration of developmental gene programs.

While the same genes are employed as during embryonic development, the new studies provide additional evidence that during regeneration, several genes are regulated in a different manner.

"We are making the first baby steps to just be able to see the process," said Simon.

"Now we can watch the process of rebuilding a limb over time in one living animal, see what these genes are doing and how they instruct the growth of news structures such as cartilage and bone," he said.

Stock added, "In fact, if we do microCT at a synchrotron radiation source such as that at the Argonne National Laboratory, we have resolution 2 micrometers or less and can see details at the cellular level. The real challenge is to recognize important information contained in the Gigbytes of microCT data we produce.

"Regeneration is the most complete repair mechanism there is. If we can develop a non-invasive experimental model system using microCT, we can learn a great deal about this process, which is directly related to wound healing and repairing of broken bones in the clinic," Simon said.

"Regenerating newt cells are similar to activated stem cells. However, what makes them special is that they contain a complete blueprint of the biological structure they have to rebuild." he said.

Elizabeth Crown and Ellen Hunt | EurekAlert!
Further information:
http://www.nwu.edu/
http://www3.interscience.wiley.com/cgi-bin/fulltext/102523340/FILE?TPL=ftx_start

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>