Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact lenses inside the eyes

03.01.2003


INASMET Foundation, a member of the TECNALIA Corporation from the Basque Country, is currently carrying out research on intraocular lenses. In fact, INASMET presented two projects at the 17th European Congress on Biomaterials held in Barcelona. Apart from publishing the results of a comparative study on intraocular lenses, they presented a project, currently under development, on intracorneal lenses.



This project started three years ago in collaboration with the Hospital de Donostia, the Department of Organic Chemistry of the University of the Basque Country and the Biomaterials Department at Inasmet.

Intracorneal lenses


As its name suggests, intracorneal lenses are implanted into the cornea. The cornea is the first of the lenses of which the eye is made up, and the most external. The function of these lenses is to correct problems such as myopia, hypermetropia and astigmatism.

The surgical technique in implanting these lenses is very straightforward. Apart from the fact that the operation has to be reversible, using suitable material to make the lenses is fundamental. Inasmet’s involvement in this project specifically targets analysis of materials for the manufacture of the lenses. The main aim is directed at the design, the properties and the production of a material compatible with the cornea.

Biocompatibility

To achieve biocompatibility, biomaterials are used. Biomaterials are materials capable of fulfilling the functions of the tissues and, thus, enabling the creation of organs or part thereof. In this current research, INASMET is analysing a material called PHEMA.

PHEMA is an hydrogel. Hydrogels have the following properties: net structure, elasticity, permeability, water absorption characteristics, etc. Given these properties, it is the habitual material used in lenses today. But when we are dealing with intracorneal lenses, things become complicated, given that the cornea has very special characteristics.

Active material

In order to be compatible with the features of a cornea, using biomaterials is not always enough. This is why, to ensure better biocompatibility, active materials are used.

The biomaterial being investigated at INASMET has a synthetic composition amongst its components. The enzymes secreted by the body in immunological response adhere to this composition and, given that the union is irreversible, these enzymes are inhibited. In this way, the body’s immune response can be halted or weakened. This fact is very important so that the material does not disintegrate, given that the lens has to last for years inside the eye. This technique is known as materials functionalisation and we say that the material is active.

All the research carried out to date has illustrated the potential of the material, but many trials are still to be done before intracorneal lenses are put on to the market. Amongst others, trials have to be carried out to achieve lenses of different dioptres, to perfect the surgical technique involved and the final trials to determine the exact composition of the material.

The project has nevertheless brought together research fields as far apart and, at the same time, as close to each other, as chemistry, materials science and medicine.

Garazi Andonegi | Elhuyar
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>