Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact lenses inside the eyes

03.01.2003


INASMET Foundation, a member of the TECNALIA Corporation from the Basque Country, is currently carrying out research on intraocular lenses. In fact, INASMET presented two projects at the 17th European Congress on Biomaterials held in Barcelona. Apart from publishing the results of a comparative study on intraocular lenses, they presented a project, currently under development, on intracorneal lenses.



This project started three years ago in collaboration with the Hospital de Donostia, the Department of Organic Chemistry of the University of the Basque Country and the Biomaterials Department at Inasmet.

Intracorneal lenses


As its name suggests, intracorneal lenses are implanted into the cornea. The cornea is the first of the lenses of which the eye is made up, and the most external. The function of these lenses is to correct problems such as myopia, hypermetropia and astigmatism.

The surgical technique in implanting these lenses is very straightforward. Apart from the fact that the operation has to be reversible, using suitable material to make the lenses is fundamental. Inasmet’s involvement in this project specifically targets analysis of materials for the manufacture of the lenses. The main aim is directed at the design, the properties and the production of a material compatible with the cornea.

Biocompatibility

To achieve biocompatibility, biomaterials are used. Biomaterials are materials capable of fulfilling the functions of the tissues and, thus, enabling the creation of organs or part thereof. In this current research, INASMET is analysing a material called PHEMA.

PHEMA is an hydrogel. Hydrogels have the following properties: net structure, elasticity, permeability, water absorption characteristics, etc. Given these properties, it is the habitual material used in lenses today. But when we are dealing with intracorneal lenses, things become complicated, given that the cornea has very special characteristics.

Active material

In order to be compatible with the features of a cornea, using biomaterials is not always enough. This is why, to ensure better biocompatibility, active materials are used.

The biomaterial being investigated at INASMET has a synthetic composition amongst its components. The enzymes secreted by the body in immunological response adhere to this composition and, given that the union is irreversible, these enzymes are inhibited. In this way, the body’s immune response can be halted or weakened. This fact is very important so that the material does not disintegrate, given that the lens has to last for years inside the eye. This technique is known as materials functionalisation and we say that the material is active.

All the research carried out to date has illustrated the potential of the material, but many trials are still to be done before intracorneal lenses are put on to the market. Amongst others, trials have to be carried out to achieve lenses of different dioptres, to perfect the surgical technique involved and the final trials to determine the exact composition of the material.

The project has nevertheless brought together research fields as far apart and, at the same time, as close to each other, as chemistry, materials science and medicine.

Garazi Andonegi | Elhuyar
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>