Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact lenses inside the eyes

03.01.2003


INASMET Foundation, a member of the TECNALIA Corporation from the Basque Country, is currently carrying out research on intraocular lenses. In fact, INASMET presented two projects at the 17th European Congress on Biomaterials held in Barcelona. Apart from publishing the results of a comparative study on intraocular lenses, they presented a project, currently under development, on intracorneal lenses.



This project started three years ago in collaboration with the Hospital de Donostia, the Department of Organic Chemistry of the University of the Basque Country and the Biomaterials Department at Inasmet.

Intracorneal lenses


As its name suggests, intracorneal lenses are implanted into the cornea. The cornea is the first of the lenses of which the eye is made up, and the most external. The function of these lenses is to correct problems such as myopia, hypermetropia and astigmatism.

The surgical technique in implanting these lenses is very straightforward. Apart from the fact that the operation has to be reversible, using suitable material to make the lenses is fundamental. Inasmet’s involvement in this project specifically targets analysis of materials for the manufacture of the lenses. The main aim is directed at the design, the properties and the production of a material compatible with the cornea.

Biocompatibility

To achieve biocompatibility, biomaterials are used. Biomaterials are materials capable of fulfilling the functions of the tissues and, thus, enabling the creation of organs or part thereof. In this current research, INASMET is analysing a material called PHEMA.

PHEMA is an hydrogel. Hydrogels have the following properties: net structure, elasticity, permeability, water absorption characteristics, etc. Given these properties, it is the habitual material used in lenses today. But when we are dealing with intracorneal lenses, things become complicated, given that the cornea has very special characteristics.

Active material

In order to be compatible with the features of a cornea, using biomaterials is not always enough. This is why, to ensure better biocompatibility, active materials are used.

The biomaterial being investigated at INASMET has a synthetic composition amongst its components. The enzymes secreted by the body in immunological response adhere to this composition and, given that the union is irreversible, these enzymes are inhibited. In this way, the body’s immune response can be halted or weakened. This fact is very important so that the material does not disintegrate, given that the lens has to last for years inside the eye. This technique is known as materials functionalisation and we say that the material is active.

All the research carried out to date has illustrated the potential of the material, but many trials are still to be done before intracorneal lenses are put on to the market. Amongst others, trials have to be carried out to achieve lenses of different dioptres, to perfect the surgical technique involved and the final trials to determine the exact composition of the material.

The project has nevertheless brought together research fields as far apart and, at the same time, as close to each other, as chemistry, materials science and medicine.

Garazi Andonegi | Elhuyar
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>