Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact lenses inside the eyes

03.01.2003


INASMET Foundation, a member of the TECNALIA Corporation from the Basque Country, is currently carrying out research on intraocular lenses. In fact, INASMET presented two projects at the 17th European Congress on Biomaterials held in Barcelona. Apart from publishing the results of a comparative study on intraocular lenses, they presented a project, currently under development, on intracorneal lenses.



This project started three years ago in collaboration with the Hospital de Donostia, the Department of Organic Chemistry of the University of the Basque Country and the Biomaterials Department at Inasmet.

Intracorneal lenses


As its name suggests, intracorneal lenses are implanted into the cornea. The cornea is the first of the lenses of which the eye is made up, and the most external. The function of these lenses is to correct problems such as myopia, hypermetropia and astigmatism.

The surgical technique in implanting these lenses is very straightforward. Apart from the fact that the operation has to be reversible, using suitable material to make the lenses is fundamental. Inasmet’s involvement in this project specifically targets analysis of materials for the manufacture of the lenses. The main aim is directed at the design, the properties and the production of a material compatible with the cornea.

Biocompatibility

To achieve biocompatibility, biomaterials are used. Biomaterials are materials capable of fulfilling the functions of the tissues and, thus, enabling the creation of organs or part thereof. In this current research, INASMET is analysing a material called PHEMA.

PHEMA is an hydrogel. Hydrogels have the following properties: net structure, elasticity, permeability, water absorption characteristics, etc. Given these properties, it is the habitual material used in lenses today. But when we are dealing with intracorneal lenses, things become complicated, given that the cornea has very special characteristics.

Active material

In order to be compatible with the features of a cornea, using biomaterials is not always enough. This is why, to ensure better biocompatibility, active materials are used.

The biomaterial being investigated at INASMET has a synthetic composition amongst its components. The enzymes secreted by the body in immunological response adhere to this composition and, given that the union is irreversible, these enzymes are inhibited. In this way, the body’s immune response can be halted or weakened. This fact is very important so that the material does not disintegrate, given that the lens has to last for years inside the eye. This technique is known as materials functionalisation and we say that the material is active.

All the research carried out to date has illustrated the potential of the material, but many trials are still to be done before intracorneal lenses are put on to the market. Amongst others, trials have to be carried out to achieve lenses of different dioptres, to perfect the surgical technique involved and the final trials to determine the exact composition of the material.

The project has nevertheless brought together research fields as far apart and, at the same time, as close to each other, as chemistry, materials science and medicine.

Garazi Andonegi | Elhuyar
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>