Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue works to transform Ebola virus from killer to healer

17.12.2002


By redesigning the shell of Ebola, Purdue University researchers have transformed the feared virus into a benevolent workhorse for gene therapy – and as one of the first gene bearers that can be inhaled rather than injected, it might prove valuable in the fight against lung disease.



While replacing the infection-causing genes inside an ordinarily harmful retrovirus with helpful genetic material is a relatively common research practice, David Sanders and his colleagues have gone a step beyond this technique.

The group, which also includes Anthony Sanchez of the Centers for Disease Control and Purdue graduate student Scott Jeffers, has hit upon a way to simplify Ebola’s outer shell as well, rendering it more easily produced in a laboratory and more effective at delivering genes to defective cells. Since unmodified Ebola enters through, and attacks, the lungs, defective lung cells could benefit most from therapy based on this discovery.


"We are adding a new tool to the gene-therapy toolbox," said Sanders, associate professor of biological sciences in Purdue’s School of Science. "Up to this point, modified retroviruses could only be injected. Now we have a potential method of treating lung conditions with an inhaled retrovirus that is more easily produced in the lab than the version found in nature."

The research appears in Sunday’s (12/15) Journal of Virology.

Gene therapy is the introduction of new genetic material into an organism for medical benefit, such as correcting the genetic defect responsible for cystic fibrosis. While viruses are often thought of as harmful, their ability to introduce new genes into cells gives them great potential for gene therapy.

Ordinarily, a virus injects its own genetic material into a cell, but scientists have learned how to "borrow" the outer shell from a harmful virus and fill it up with other, beneficial genetic material that heals rather than harms the recipient. These shells are made of proteins, enormously complex molecules formed from long strings of amino acids. It is these proteins that allow a virus to attach itself to, and penetrate, cell membranes, but their complexity creates difficulty for researchers.

"Recreating shells in a laboratory is an involved and time-consuming business," Sanders said. "We wanted to find a way to reduce our workload."

To a viral researcher such as Sanders, a protein’s amino acid string can be read like a car’s schematic. If a section of string appears to recur in many different viruses, it’s a safe bet that part of the string serves some essential function.

"If you’d never seen a car but wanted to know what you’d need to build one, you might look at blueprints for lots of models and see what parts were common to all cars," Sanders said. "You might conclude that while an engine was essential, you could still build a working automobile without power windows. We do the same sort of thing with viruses to construct shells that will do what we want."

Sanders’ team examined the variant proteins that made up the shells of all the different strains of Ebola, and they noticed a particular string of amino acids kept cropping up.

"All strains of Ebola have a protein shell made of a sequence of about 675 amino acids, and we noticed that one section of that long string – of 181 amino acids, to be precise – had a strikingly similar chemical character," Sanders said. "That told us that section probably served the same biochemical function in each strain of the virus."

But while the similarities seemed to indicate that the section was important, the group noticed a subtle difference that made them conclude otherwise. While the amino acids were more or less the same, they appeared in different sequences from strain to strain.

"We think that section of the string is only important to disguise the virus from the immune system," Sanders said. "It’s a protective paint job, not a piston. Our viruses don’t need to hide from the immune system because they don’t replicate themselves inside the cells they invade – they switch good genes for bad and disappear. So we reasoned it was unnecessary to include that section in our viruses – we could get our Ebola through the assembly line faster if the paint job were skipped."

Armed with this hypothesis, the group removed those 181 amino acids from the string and built a shell from the remainder. The team’s efforts paid off: Their modified Ebola shell not only proved effective at attaching itself to cell membranes but also delivered its genetic payload more efficiently.

"We managed to cut more than 25 percent of the string and found the retrovirus would transfer genes even more effectively than one with a ’natural’ Ebola coat," Sanders said. "We now have a vehicle that can potentially bring genes directly to the lungs, which was not feasible before."

The next step will be attempting to correct certain defective genes within lung cells. Cystic fibrosis and lung cancer are diseases that Sanders’ group hopes to tackle.

"Cystic fibrosis is the most common serious genetic disease among Caucasians in the world," Sanders said. "Lung cancer is the leading cancer killer in both men and women, so therapies to counter these diseases would be a wonderful achievement."

For the moment, Sanders said he is pleased that virus shells can be simplified and remain effective tools.

"It’s encouraging news for other gene-therapy researchers," he said. "If we can simplify other virus shells as well, it will mean less time and energy in the lab, which translates into savings for the medical industry."

This research was sponsored by the Cystic Fibrosis Foundation and the Purdue Research Foundation.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: David A. Sanders, (765) 494-6453, retrovir@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Related Story:
Purdue research hints that birds could spread Ebola virus


Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/021216.Sanders.ebola.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>