Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemoglobin-Based Agent Reduces Need for Transfusion During Heart Surgery

13.12.2002


A Phase II clinical trial conducted at Duke University Medical Center and five other U.S. institutions has shown that an agent made of purified human hemoglobin appears safe and may be effective when used instead of transfused human blood to replace blood lost during heart surgery.



If the benefits of the agent, known as hemoglobin raffimer, are proven in subsequent Phase III clinical trials, physicians would not need to use as much donated blood during surgery, the researchers said. An estimated 20 percent of all human blood transfused in the U.S. is associated with heart surgery, so the Duke researchers believe that an efficient ?oxygen therapeutic? could play an important role in reducing the need for transfused blood.

The results of the trial were published today (Dec. 13, 2002) in the Journal of Cardiothoracic and Vascular Anesthesia.


The study also showed although hemoglobin raffimer -- like other oxygen therapeutics or blood substitutes tested to date -- produced elevated blood pressures during surgery, it was the only significant side effect and was manageable.

?Our data suggests that hemoglobin raffimer, when used during bypass surgery, is well tolerated and may be effective in reducing blood transfusions,? said Duke anesthesiologist Steven Hill, M.D. ?Although elevated blood pressure was more frequent in patients given hemoglobin raffimer when compared to controls, aggressive management kept blood pressures under control.

?If we had an agent that could temporarily sustain oxygen delivery to the body during surgery without having to use donated blood, that could have significant long-term potential for our patients,? he said.

Hill said the importance of developing an effective oxygen therapeutic is not only because of the decreasing donor pool for human blood and fears of disease transmission, but also because transfused blood may lead to worse outcomes after heart surgery. He cited the results of a recent study conducted at the Medical College of Ohio, which showed that five years after heart surgery, 15 percent of patients receiving blood transfusions had died, compared to a seven percent mortality rate for those who didn?t receive a transfusion.

?It may be that transfusion is not as safe as we think,? Hill said. ?So if we had a product that we could pull off the shelf at any time, and not have to worry about the possibilities of any infectious agents or immune responses, that could be a major step forward in improving outcomes.?

Hemoglobin raffimer is produced by removing hemoglobin, an oxygen-carrying molecule, from human red blood cells that have ?expired,? or passed their 42-day shelf life. After 42 days, Hill explained, stored red blood cells begin to break down and are no longer used in human transfusions.

?For hemoglobin raffimer, the hemoglobin is extracted and the other components of the red blood cells are discarded,? Hill said. ?The hemoglobin is then heat-treated and filtered, which eliminates risks of infectious agents.?

In bypass procedures, some of a patient?s own blood may be removed just prior to being placed on the heart-lung machine -- which takes over for the heart during surgery. The blood is replaced by a colloid solution. Then, the patients? own blood can be returned at a later point during the surgery, preferably after blood loss has ceased. This blood preservation strategy is frequently used to reduce the need for transfused blood.

?To avoid transfusion during cardiac surgery, however, we do have to remove a significant amount of the patients? own blood,? Hill said. ?A hemoglobin-based oxygen carrier would provide additional circulating hemoglobin to facilitate safe removal of the patient?s blood and support oxygen delivery to the body during the three to four hours of surgery.?

In the Duke study, 60 patients undergoing coronary artery bypass operations at six U.S. medical centers were randomized to receive either varying doses of hemoglobin raffimer or colloid during surgery. Of those receiving hemoglobin raffimer, 44 percent did not need a blood transfusion, while 18 percent of the control group avoided transfusion. Other than elevated blood pressures, the researchers found no other significant negative side effects from the agent.

There are two other ongoing trials of hemoglobin raffimer -- a Phase III trial being conducted in Canada and the United Kingdom, as well as a Phase II trial in the U.S., which is examining the effectiveness of the agent at higher doses.

The clinical trial was funded by Hemosol, Inc., Toronto, which developed hemoglobin raffimer. Hill has no financial interest in Hemosol.

Joining Hill in the study were Katherine Grichnik, M.D., from Duke and Lewis Gottschalk, M.D., University of Texas Medical School, Houston.

contact sources :
Steven Hill , (919) 681-6614
Hill0012@mc.duke.edu

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=6189
http://www.mc.duke.edu/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>