Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm Enzyme Has Promise for Patients with Cardiovascular Disease

12.12.2002


The simple worm has at least one talent that could benefit most Americans.




It can convert Omega-6 -- a group of fatty acids abundant in the Western diet with the potential to promote inflammation - into Omega-3, another class of fatty acids that decreases inflammation, helping keep vessel walls smooth and blood free-flowing.

The question one Medical College of Georgia researcher is asking is whether the enzyme these C. Elegans, or nematodes, use can work the same magic in people.


Dr. Steffen E. Meiler and his colleagues at Massachusetts General Hospital and Harvard Medical School have found, at least in laboratory studies of human endothelial cells, that this enzyme, fat-1, can halve the number of white blood cells that can adhere to the surface of blood vessel walls, laying a foundation for vascular disaster.

Dr. Meiler, an anesthesiologist and critical care specialist, got interested in the process that turns blood vessel linings from Teflon to Velcro because of the increased incidence of heart attack, stroke and deadly heart rhythms following surgery in patients with known cardiovascular disease.

The last decade of science has provided solid evidence that inflammation plays a role in cardiovascular disease in general; Dr. Meiler believes inflammation may also be the culprit that puts some people at risk following surgery.

"Our working hypothesis is that the vascular endothelium becomes activated or inflamed after surgery and begins to react with blood components, such as white blood cells, setting the stage for high-risk cardiac complications, such as a heart attack,” said Dr. Meiler, vice chairman for research for the MCG Department of Anesthesiology and Perioperative Medicine. "Something about anesthesia and surgery and the type of morbidity that these patients bring makes this happen acutely. And right now there is no way we can protect the endothelium in the perioperative window."

But what he and his colleagues are finding may one day provide that protection.

Their work, funded by the National Institutes of Health, was selected for the American Heart Association’s Best of Scientific Sessions 2002, honoring the top scientific studies presented at the association’s Nov. 17-20 annual meeting.

Cardiologists already recommend more Omega-3 - found in high concentrations in fish such as salmon, mackerel and tuna - in the diet, through supplements or both. But most Americans likely consume far more Omega-6, found in high levels in foods such as beef, margarine, mayonnaise and vegetable oils. Native Alaskans, with fish-rich diets and low rates of cardiovascular disease, are good examples of the vessel-protecting potential of the Omega-3 polyunsaturated fatty acids.

Abundant evidence accumulated in animal and clinical studies shows that Omega-3 protects vessels by exerting an anti-inflammatory effect; it’s also a powerful anti-arrhythmic. In fact, it’s also been shown beneficial in inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease.

Inflammation, part of the body’s natural response to injury, appears to have a fairly early role in cardiovascular disease. Fatty streaks in the vessels are often the earliest signs of disease that may one day mature into vessel-narrowing plaque, a nasty concoction of monocytes, lymphocytes, cholesterol, lipids, debris, excess smooth muscle cells and more.

"Inflammation probably sets in at the time when early streaking starts," Dr. Meiler said, probably because the early fat deposits evoke that response. But in cardiovascular disease, inflammation goes unchecked and becomes self-promoting. The Teflon-like endothelial lining of the blood vessels express adhesion molecules that create a sticky trap for white blood cells floating by in the bloodstream. The ones that stick can then migrate into the vessel wall to do their inflaming work.

"What is known is that blood vessels that are exposed to high cholesterol and that already have developed a certain stage of arteriosclerosis will already be pre-inflamed," Dr. Meiler said. "These cells are not normal. It is our hypothesis that when you add surgery in these folks, these cells will respond particularly vigorously and develop an endothelial inflammatory phenotype that will then cause more interaction with white blood cells and may lead to myocardial infarction."

That’s where the worms come in.

Worms need a lot of Omega-3 to develop and, in contrast to humans and other mammals, they can convert Omega-6 to Omega-3, using the fatty acid desaturase fat-1.

So the scientists took the fat-1 enzyme and, using a virus as a delivery mechanism, put it into human endothelial cells, then added Omega-6 and stimulated the inflammatory process. They found, at least in culture, that the worm enzyme could convert Omega-6 fatty acids to their protective Omega-3 counterparts in human vascular endothelial cells as well.

Then the researchers wanted to look specifically at the level of inflammation as evidenced by the endothelium being transform from smooth to sticky. They looked at three surface-adhesion molecules important in trapping white blood cells and, again, fat-1 dramatically reduced these inflammatory markers on the surface of the human endothelium.

Next, just to make sure that this reduced level of adhesion molecule expression translated to fewer white blood cells sticking to the walls, they mimicked what goes on inside the vessels by putting the endothelial cells in a chamber with monocyte-rich fluid flowing over them. That’s when they noted the 50 percent reduction in sticking of these cells that cause much of the inflammatory damage.

The next step is to develop a transgenic mouse that expresses fat-1 and see if the findings translate to a whole organism.

"The overriding question is how acute endothelial inflammation affects perioperative management," he said. Whether a genetic approach, as taken by Dr. Meiler and his colleagues, to change the lipid profile of human endothelial cells will ever become a practical consideration, remains to be seen.

However, “Our results have stirred a lot of excitement and we are eager to continue our work in this area,” Dr. Meiler said.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/news/2002NewsRel/Meiler.html
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>