Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria drug muddle

03.12.2002


Research community questioning legitimacy of Canadian drug approved for market in Africa

With one million deaths and 300 million new cases of malaria each year, the quest for a successful malaria treatment is urgent. But one new drug, touted by its manufacturer as safe and exceptionally effective, and already approved for sale by five African nations, is provoking suspicion in the malaria research community. At best, some researchers claim, the Canadian drug Malarex has not been adequately tested for safety or efficacy, at worst, others say, it may be a fraud.


"Malarex is a natural extract, which is a bunch of alkaloids, and the one that is most active is voacamine," explains Leonard Stella, the chief operating officer of Millenia Hope, a small biotech company based in Montreal. "Our goal is to get the product to the people because we know it’s not harmful and we know that it works." And since it’s a herbal remedy that’s been used by "witch doctors" in Brazil for many years, Stella adds, "we haven’t done tests yet to find out how it works."

Though Millenia Hope may not understand the drug’s mechanism of action, the company does claim to have demonstrated, in vitro as well as in animals and humans, the drug’s ability to kill the malaria parasite Plasmodium falciparum, and to do so safely. But even the researchers said to have performed the tests do not corroborate all the company’s claims.

Founded in 1997, Millenia Hope obtained an Italian patent four years ago for a natural compound called voacamine, derived from the roots and bark of the Brazilian plant Peschiera fuchsiaefolia, and developed the extract into its premier product, Malarex. In one press release dated February 7, 2001, Millenia Hope states that in vitro tests by McGill University malaria researchers Erwin Schurr and Celestino DeFlumeri of the Center for the Study of Host Resistance, "confirmed that, even at extremely low doses, Malarex was able to cause a substantial decrease in malarial parasite."

Schurr, says that his lab did receive a compound from Millenia Hope identified as Malarex, and was asked to test it for anti-malarial activity. With the help of another lab, Schurr confirmed that the compound did contain voacamine, though not in pure form, but rather was a mixture of several crude extracts. Still, Schurr tested the compound on his Plasmodium cultures and found that it could kill the parasite. The results were given in a confidential report to Millenia Hope, says Schurr but "The selective quotation of results contained in the report prior to publication are upsetting and have prompted us to cease further work with Millenia Hope."

Schurr adds, "the in-vitro experiments in my lab were repeated on numerous occasions and the results were quite impressive in that we detected significant anti-plasmodial activity. But what we showed was that under artificial laboratory conditions a compound identified to us as Malarex can efficiently kill Plasmodium parasites, but so can bleach, to be the devil’s advocate." There is a long way to go, Shurr says, "to determine if and to what extent such in vitro activity can be maintained in an in vivo system. Obviously, a huge amount of additional investigation is needed to make any inferences about the possible utility of this compound for treatment of malaria in people."

In a quarterly report published October 15, 2001, Millenia Hope stated that it is "running a new series of animal tests, under the auspices of Dr. Mary Stevenson of McGill University." Mary Stevenson is an immunologist at McGill and indeed working on malaria, but could not offer any comments on the effectiveness of Malarex on blood-stage malaria. "Millenia Hope and McGill University negotiated and signed a contract for me to carry out toxicity and efficacy studies on Malarex in a mouse model of malaria. The company reneged and did not provide the agreed upon funds for the work. Thus, the studies were never performed despite my interest," she says.

In yet another press release dated June 10, 2000, the company stated: "tests on Malarex had produced no mortality or significant side effects in pre-clinical animal laboratory studies. The toxicity tests, carried out at FDA-approved facilities in Montreal, Canada, used doses as high as 100 times the usual dose without producing significant clinical side-effects in the laboratory animals used for the study." According to Stella, these tests were performed at a contracted lab and conducted by Millenia Hope’s chairman, George Tsoukas, a physician and professor at McGill and Montreal General Hospital.

Tsoukas did not return The Scientist’s calls seeking information about Millenia Hope’s scientific claims. One of those is that human trials of the drug have been performed and more are planned. The company’s web site states, "Our medical research program has always foreseen the need for continuing clinical human trials to confirm Malarex’s safety and efficacy in humans. Dr. Knox van Dyke, a pharmacology professor at West Virginia University and a renowned malaria researcher, will head a new trial."

Van Dyke, who believes that Malarex has antimalarial activity, told The Scientist that negotiations are ongoing but no trial is yet scheduled. "If you find a capsule of the drug, you will ascertain that the material inside the capsule is a crude extract of the drug rather than the pure voacamine whose structure is known. This is all the information I have at present," says van Dyke.

The only human clinical trial of Malarex that could be confirmed by The Scientist involved 30 patients and was conducted by Albert Same Ekobo, former national coordinator of Cameroon’s Anti-Malarial Programme in Yaounde. Millenia Hope stated in January 2002 that all patients were cured of their malarial symptoms within four days, results that "are consistent with our other studies of Malarex."

Reinhard Krippner, with the German Embassy in Yaounde, has inquired at Cameroon’s Ministry of Health about testing of Malarex in that country and discovered that Same Ekobo did do a study in 1999 after being asked by his Minister of Health "to do a ’little’ trial because [the Minister] was close to the company." Same Ekobo’s results have not been published.

Of only nine publications on voacamine in peer-reviewed scientific journals dating back to 1967, none mentions either Malarex or Millenia Hope. The most recent study, published last year in Phytotherapy Research, confirms that the alkaloid has some effect on malarial parasites both in cell cultures and mice but concludes that "further work is needed to clarify the mechanism of action."


Confusing matters further, another malaria drug called Malarex, containing the well-established malaria treatment chloroquine diphosphate, is manufactured by the Danish company Alpharma. Millenia Hope’s Stella says that the company is "aware of their competition." In the countries where Alpharma is selling its Malarex which, according to Stella, include the same Central African countries where Millenia Hope is marketing its drug Millenia Hope has changed its drug’s name to MMH Malarex.

Millenia Hope also claims a strategic partnership with Malaria Foundation International (MFI), however Mary Galinski, president and founder of MFI, told The Scientist that the foundation has never been involved with Millenia Hope or any projects pertaining to Malarex.

Despite the apparent lack of evidence that Millenia Hope’s Malarex is safe for humans, the company says it has received approval for sale of the drug in five Central African countries and is awaiting word from six more nations. Millenia Hope is expecting to ship upward of 25 million doses to those 11 countries, but it could be a while, explains Stella. "We worked our tails off to get the product approved, then we worked to get the right distributor and then it turns out that these African governments can’t afford it," he says. "So now we are trying to get the Canadian government to subsidize the African governments so they can afford to buy Malarex."

"In my opinion this is a crock," one Canadian malaria expert familiar with Millenia Hope and their research on Malarex told The Scientist. Another malaria researcher suggests that the explanation for the inconsistencies surrounding Millenia Hope’s claims could be that the company, which is listed on the Berlin stock exchange and the NASDAQ, may not have a real drug to sell.

"This seems like a financial scam which probably works very well on unsuspecting stock market gamblers," says Marcel Hommel, editor of Malaria Journal (an open access journal published by The Scientist’s partner BioMed Central) and professor at the Liverpool School of Tropical Medicine. "If, for the sake of argument, we believe that the drug does not actually exist, the whole thing makes complete sense!"

Diane Martindale | BioMed Central
Further information:
http://www.the-scientist.com
http://www.biomedcentral.com/news/20021115/07/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>