Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blowing up diseased lungs could save lives


Patients with acute respiratory distress syndrome (ARDS) rely on mechanical ventilation to breathe, however routine suctioning to remove debris that may be blocking their airways can cause lung tissue to collapse. New research published in Critical Care explains how a new technique involving the re-inflation of lungs after suctioning can lead to a marked improvement in the condition of patients with acute respiratory distress syndrome.

Acute respiratory distress syndrome is a devastating inflammatory lung disease that affects around 150,000 people each year in the US alone. The syndrome is characterized by fluid accumulation and swelling in the lungs, followed by respiratory failure that can often be fatal.

An ARDS patient relies on mechanical ventilation to breathe, but if their airway becomes fully or even partially blocked it can lead to several serious physiological abnormalities and even death. Unfortunately, the use of suctioning to remove obstruction can lead to the collapse of lung tissues making it more difficult for a patient to get oxygen into their bodies.

In an effort to improve the care of patients with ARDS, Thomas Dyhr and colleagues have investigated the effect of re-inflating the lungs after suctioning. This re-inflation technique is known as a lung recruitment manoeuvre as it "recruits" previously collapsed lung tissue to help the patient breathe more easily

Dyhr and colleagues conducted a small randomised controlled study of eight patients with ARDS to test whether inflating the lung twice after suctioning was beneficial. The lung volume and the concentration of oxygen in arterial blood was monitored to establish the effects of the treatment.

The results showed that re-inflation was able to reduce the adverse effects of suctioning by increasing both the lung volume and the level of oxygen in arterial blood.

The researchers recognise this is only a small preliminary study, but they are hopeful that this re-inflation technique could have a positive impact on the recovery of patients with ARDS.

This research article is freely available online at and is scheduled to be in Critical Care’s next print issue.

Gordon Fletcher | BioMed Central Limited
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>