Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blowing up diseased lungs could save lives


Patients with acute respiratory distress syndrome (ARDS) rely on mechanical ventilation to breathe, however routine suctioning to remove debris that may be blocking their airways can cause lung tissue to collapse. New research published in Critical Care explains how a new technique involving the re-inflation of lungs after suctioning can lead to a marked improvement in the condition of patients with acute respiratory distress syndrome.

Acute respiratory distress syndrome is a devastating inflammatory lung disease that affects around 150,000 people each year in the US alone. The syndrome is characterized by fluid accumulation and swelling in the lungs, followed by respiratory failure that can often be fatal.

An ARDS patient relies on mechanical ventilation to breathe, but if their airway becomes fully or even partially blocked it can lead to several serious physiological abnormalities and even death. Unfortunately, the use of suctioning to remove obstruction can lead to the collapse of lung tissues making it more difficult for a patient to get oxygen into their bodies.

In an effort to improve the care of patients with ARDS, Thomas Dyhr and colleagues have investigated the effect of re-inflating the lungs after suctioning. This re-inflation technique is known as a lung recruitment manoeuvre as it "recruits" previously collapsed lung tissue to help the patient breathe more easily

Dyhr and colleagues conducted a small randomised controlled study of eight patients with ARDS to test whether inflating the lung twice after suctioning was beneficial. The lung volume and the concentration of oxygen in arterial blood was monitored to establish the effects of the treatment.

The results showed that re-inflation was able to reduce the adverse effects of suctioning by increasing both the lung volume and the level of oxygen in arterial blood.

The researchers recognise this is only a small preliminary study, but they are hopeful that this re-inflation technique could have a positive impact on the recovery of patients with ARDS.

This research article is freely available online at and is scheduled to be in Critical Care’s next print issue.

Gordon Fletcher | BioMed Central Limited
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>