Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle cell transplants repair damaged heart tissue

18.11.2002


American Heart Association meeting report



Researchers safely transplanted 16 patients’ skeletal muscle cells into their own severely damaged hearts in the first human testing in the United States, according to a study reported today at the American Heart Association’s Scientific Sessions 2002.

"We have been able to regenerate dead heart muscle, or scar tissue, in the area of heart attack without increasing risk of death," says lead author Nabil Dib, M.D., director of cardiovascular research at the Arizona Heart Institute in Phoenix. "Our findings will allow us to move forward with testing if the procedure can improve the contractility of the heart."


The interim results indicate the procedure is safe and feasible, he says.

When patients suffer a heart attack, scar tissue develops, resulting in a decrease in heart contractility – its ability to compress and force blood through its chambers. Since heart cells can’t repair themselves, this damage is irreversible and eventually results in heart failure.

Researchers conducted the multi-center trial, overseen by the U.S. Food and Drug Administration, in patients who had suffered heart attacks or heart failure and whose hearts had reduced pumping ability evidenced by left-ventricular ejection fraction (EF) less than 30 percent. EF measures the quantity of blood pumped from the heart with each beat. A healthy heart pumps out a little more than half the heart’s volume of blood with each beat for an EF of 55 percent or higher.

Eleven patients were undergoing coronary artery bypass surgery (CABG) and five were having a left ventricular assist device (LVAD) implanted. An LVAD helps a failing heart until a donor heart becomes available for transplant.

The patients’ myoblasts cells (immature cells that become muscle cells) were extracted from thigh muscle. Large quantities of the cells were grown in the laboratory for three to four weeks using a controlled cell expansion manufacturing process. During the surgery, one to 30 direct injections – containing 10 million cells each – were made into the damaged area of the hearts. The dosages ranged from 10 million to 300 million cells.

"We found that the transplanted myoblasts survived and thrived in patients. Areas damaged by heart attack and cardiovascular disease showed evidence of repair and viability," Dib says.

No significant adverse reactions were found related to the cell transplant procedure in either group of patients in follow-up testing nine months later.

There was one death due to infection of the device in the LVAD group three months after cell transplantation, and one patient in the CABG group had non-sustained ventricular tachycardia – a fast heart rate that starts in the lower chambers (ventricles).

While the trial was not designed to evaluate the effect of cell transplant on cardiac function, Dib calls the results extremely encouraging. Examining the heart by echocardiogram, magnetic resonance imaging (MRI), and positron emission tomography (PET scan) showed evidence of scar tissue regeneration in the area of the graft, which indicates repair.

EF rates improved, on average, from 22.7 percent to 35.8 percent – a 58 percent increase – after 12 weeks.

"The important finding in the LVAD clinical study, is that we were able to directly examine and observe histological changes in the heart muscle of patients after they received a new heart and their old one was removed," Dib says.

The results were also compared against a group of historical controls from a Yale University study, published in the Journal of the American College of Cardiology (93:22:1411-7) of 83 patients with EF less than 30 percent before bypass surgery. In the Yale group, there was a 13 percent overall death rate and an 11 percent heart death rate at one year.

After bypass, the Yale group’s EF improved from 24.6 percent to 33.2 percent – a 36 percent increase.

At Scientific Sessions 2000, French researchers described the first human experience with autologous skeletal myoblast transplantation. The transplant improved EF in a 72-year-old man undergoing a bypass procedure. Subsequent procedures in other patients have been reported at other meetings. Those studies showed similar improvement in viability of dead or damaged heart tissue, but several adverse reactions, such as life-threatening arrhythmias also were reported.

No such complications were found in this study, Dib notes.

Other promising cellular and molecular procedures are being explored as ways to repair and strengthen the damaged heart by replacing dysfunctional or dead heart cells with cells from other sites and those grown in laboratories, Dib says. These include embryonic and adult cardiomyocytes, embryonic stem cells, genetically altered fibroblasts, smooth muscle cells, bone marrow-derived cells, and adult skeletal myoblasts.


Co-authors are Patrick McCarthy, M.D.; Ann Campbell, R.N.; Johnathan Dinsmore, Ph.D.; Michael Yeager, R.N.; Francis D. Pagani, M.D.; Susan Wright, R.N.; W. Robb MacLellan, M.D.; Gregg Fonarow, M.D.; Howard J. Eisen, M.D.; Satoshi Furukawa, M.D.; Robert E. Michler, M.D.; Diane Buchele, R.N.; Marwan Ghazoul, M.D.; and Edward B. Diethrich, M.D. The study was funded by Diacrin, Inc.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>