Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle cell transplants repair damaged heart tissue

18.11.2002


American Heart Association meeting report



Researchers safely transplanted 16 patients’ skeletal muscle cells into their own severely damaged hearts in the first human testing in the United States, according to a study reported today at the American Heart Association’s Scientific Sessions 2002.

"We have been able to regenerate dead heart muscle, or scar tissue, in the area of heart attack without increasing risk of death," says lead author Nabil Dib, M.D., director of cardiovascular research at the Arizona Heart Institute in Phoenix. "Our findings will allow us to move forward with testing if the procedure can improve the contractility of the heart."


The interim results indicate the procedure is safe and feasible, he says.

When patients suffer a heart attack, scar tissue develops, resulting in a decrease in heart contractility – its ability to compress and force blood through its chambers. Since heart cells can’t repair themselves, this damage is irreversible and eventually results in heart failure.

Researchers conducted the multi-center trial, overseen by the U.S. Food and Drug Administration, in patients who had suffered heart attacks or heart failure and whose hearts had reduced pumping ability evidenced by left-ventricular ejection fraction (EF) less than 30 percent. EF measures the quantity of blood pumped from the heart with each beat. A healthy heart pumps out a little more than half the heart’s volume of blood with each beat for an EF of 55 percent or higher.

Eleven patients were undergoing coronary artery bypass surgery (CABG) and five were having a left ventricular assist device (LVAD) implanted. An LVAD helps a failing heart until a donor heart becomes available for transplant.

The patients’ myoblasts cells (immature cells that become muscle cells) were extracted from thigh muscle. Large quantities of the cells were grown in the laboratory for three to four weeks using a controlled cell expansion manufacturing process. During the surgery, one to 30 direct injections – containing 10 million cells each – were made into the damaged area of the hearts. The dosages ranged from 10 million to 300 million cells.

"We found that the transplanted myoblasts survived and thrived in patients. Areas damaged by heart attack and cardiovascular disease showed evidence of repair and viability," Dib says.

No significant adverse reactions were found related to the cell transplant procedure in either group of patients in follow-up testing nine months later.

There was one death due to infection of the device in the LVAD group three months after cell transplantation, and one patient in the CABG group had non-sustained ventricular tachycardia – a fast heart rate that starts in the lower chambers (ventricles).

While the trial was not designed to evaluate the effect of cell transplant on cardiac function, Dib calls the results extremely encouraging. Examining the heart by echocardiogram, magnetic resonance imaging (MRI), and positron emission tomography (PET scan) showed evidence of scar tissue regeneration in the area of the graft, which indicates repair.

EF rates improved, on average, from 22.7 percent to 35.8 percent – a 58 percent increase – after 12 weeks.

"The important finding in the LVAD clinical study, is that we were able to directly examine and observe histological changes in the heart muscle of patients after they received a new heart and their old one was removed," Dib says.

The results were also compared against a group of historical controls from a Yale University study, published in the Journal of the American College of Cardiology (93:22:1411-7) of 83 patients with EF less than 30 percent before bypass surgery. In the Yale group, there was a 13 percent overall death rate and an 11 percent heart death rate at one year.

After bypass, the Yale group’s EF improved from 24.6 percent to 33.2 percent – a 36 percent increase.

At Scientific Sessions 2000, French researchers described the first human experience with autologous skeletal myoblast transplantation. The transplant improved EF in a 72-year-old man undergoing a bypass procedure. Subsequent procedures in other patients have been reported at other meetings. Those studies showed similar improvement in viability of dead or damaged heart tissue, but several adverse reactions, such as life-threatening arrhythmias also were reported.

No such complications were found in this study, Dib notes.

Other promising cellular and molecular procedures are being explored as ways to repair and strengthen the damaged heart by replacing dysfunctional or dead heart cells with cells from other sites and those grown in laboratories, Dib says. These include embryonic and adult cardiomyocytes, embryonic stem cells, genetically altered fibroblasts, smooth muscle cells, bone marrow-derived cells, and adult skeletal myoblasts.


Co-authors are Patrick McCarthy, M.D.; Ann Campbell, R.N.; Johnathan Dinsmore, Ph.D.; Michael Yeager, R.N.; Francis D. Pagani, M.D.; Susan Wright, R.N.; W. Robb MacLellan, M.D.; Gregg Fonarow, M.D.; Howard J. Eisen, M.D.; Satoshi Furukawa, M.D.; Robert E. Michler, M.D.; Diane Buchele, R.N.; Marwan Ghazoul, M.D.; and Edward B. Diethrich, M.D. The study was funded by Diacrin, Inc.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>