Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted radiation to liver tumors spares tissue, improves quality of life

12.11.2002


Radioactive spheres delivered via blood flow to tumor



Vanderbilt University Medical Center is offering the latest advancement for treating inoperable liver tumors.

Selective Internal Radiation Therapy (SIRT) targets a very high radiation dose to tumors within the liver, regardless of their cell of origin, number, size or location. The procedure uses biocompatible radioactive microspheres (SIR-Spheres®) that contain yttrium-90 and emit high energy beta radiation.


"The liver doesn’t tolerate external beam radiation in sufficient doses to affect tumor without damaging the remaining good liver," said Dr. C. Wright Pinson, H. William Scott Jr. Professor of Surgery and chair of the department. "These spheres emit radiation for a short distance, less than a centimeter. If you can cluster radiation right around the tumor, the radiation exposure at the tumor site compared to normal liver is favorable."

The spheres are implanted using a catheter placed in the artery feeding the liver and travel via the blood stream, where the spheres are targeted to the tumors within the liver. The spheres are trapped in the small blood vessels of the tumor (doctors do not have to identify the number or location of tumors, since the spheres target the cancerous growth in the liver) where they destroy the tumor without affecting most of the normal liver tissue.

In the procedure, an interventional radiologist selectively catheterizes the arteries feeding the tumor and monitors the catheter during administration of the dose. A nuclear medicine scan is done before the spheres are administered to assure that the catheter is correctly positioned and that the tumors will be properly targeted.

The patient stays overnight and is discharged the next day. "The early reports describe enhanced survival rate," said Pinson, who expects as many as 50 patients could be offered the therapy within the next year at VUMC.

A randomized trial in patients with colorectal liver metastases conducted by Sirtex, the manufacturer, showed the median survival rate doubled from 12.8 months with chemotherapy alone to 27.1 months with SIRT and chemotherapy. SIRT is another means of attack in the battle against liver cancer. "This is not a cure. It’s a prolongation of life and an improvement of survival and quality of life," said Dr. Bill Martin, associate professor of Radiology and Radiological Sciences at Vanderbilt. However, unlike many cancer therapies, side effects are minimal.

"For the patient, it’s a one-time deal and they feel relatively fine afterwards. We don’t do too many procedures like that."

Many patients experience a post-procedural fever that starts immediately after implantation of the spheres and can last from a few days to a week. The fever is usually nocturnal and is likely related to the embolic effect of the microspheres and the acute radiation effects on the tumor. Some patients experience significant abdominal pain immediately after the procedure and may need pain relief with narcotic analgesia, but the pain generally subsides within an hour. Some patients will experience nausea that may require anti-emetic medication. The therapy has been used to treat hundreds of patients with liver cancer in Australia, New Zealand, Hong Kong, Singapore and Thailand. and more recently in the United States in a variety of clinical trials and in general practice.

Clinton Colmenares | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>