Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted radiation to liver tumors spares tissue, improves quality of life

12.11.2002


Radioactive spheres delivered via blood flow to tumor



Vanderbilt University Medical Center is offering the latest advancement for treating inoperable liver tumors.

Selective Internal Radiation Therapy (SIRT) targets a very high radiation dose to tumors within the liver, regardless of their cell of origin, number, size or location. The procedure uses biocompatible radioactive microspheres (SIR-Spheres®) that contain yttrium-90 and emit high energy beta radiation.


"The liver doesn’t tolerate external beam radiation in sufficient doses to affect tumor without damaging the remaining good liver," said Dr. C. Wright Pinson, H. William Scott Jr. Professor of Surgery and chair of the department. "These spheres emit radiation for a short distance, less than a centimeter. If you can cluster radiation right around the tumor, the radiation exposure at the tumor site compared to normal liver is favorable."

The spheres are implanted using a catheter placed in the artery feeding the liver and travel via the blood stream, where the spheres are targeted to the tumors within the liver. The spheres are trapped in the small blood vessels of the tumor (doctors do not have to identify the number or location of tumors, since the spheres target the cancerous growth in the liver) where they destroy the tumor without affecting most of the normal liver tissue.

In the procedure, an interventional radiologist selectively catheterizes the arteries feeding the tumor and monitors the catheter during administration of the dose. A nuclear medicine scan is done before the spheres are administered to assure that the catheter is correctly positioned and that the tumors will be properly targeted.

The patient stays overnight and is discharged the next day. "The early reports describe enhanced survival rate," said Pinson, who expects as many as 50 patients could be offered the therapy within the next year at VUMC.

A randomized trial in patients with colorectal liver metastases conducted by Sirtex, the manufacturer, showed the median survival rate doubled from 12.8 months with chemotherapy alone to 27.1 months with SIRT and chemotherapy. SIRT is another means of attack in the battle against liver cancer. "This is not a cure. It’s a prolongation of life and an improvement of survival and quality of life," said Dr. Bill Martin, associate professor of Radiology and Radiological Sciences at Vanderbilt. However, unlike many cancer therapies, side effects are minimal.

"For the patient, it’s a one-time deal and they feel relatively fine afterwards. We don’t do too many procedures like that."

Many patients experience a post-procedural fever that starts immediately after implantation of the spheres and can last from a few days to a week. The fever is usually nocturnal and is likely related to the embolic effect of the microspheres and the acute radiation effects on the tumor. Some patients experience significant abdominal pain immediately after the procedure and may need pain relief with narcotic analgesia, but the pain generally subsides within an hour. Some patients will experience nausea that may require anti-emetic medication. The therapy has been used to treat hundreds of patients with liver cancer in Australia, New Zealand, Hong Kong, Singapore and Thailand. and more recently in the United States in a variety of clinical trials and in general practice.

Clinton Colmenares | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>