Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale Researchers Shed Light on B Cells’ Involvement in Autoimmune Diseases like Lupus

01.10.2002


Using genetically altered mice, Yale researchers have generated a clearer picture of the origins of B cells and their involvement in autoimmune diseases such as lupus, rheumatoid arthritis and diabetes.



Published in the September 20 issue of Science, the study, led by Mark Shlomchik, M.D., associate professor of laboratory medicine at Yale School of Medicine, looked at B cells’ reactions to its own toxins, known as antigens. B lymphocyte cells normally produce antibodies to viruses and bacteria, which protect against infection. However, when these antibodies are directed toward the body’s own components they are called "autoantibodies," which can cause inflammation and autoimmune disease.

"B cells that react with ’self’ antigens (autoreactive B cells) are very important in the origins of these autoimmune diseases," said Shlomchik. "These B cells make autoantibodies, and also stimulate white blood cells called autoreactive T lymphocytes that destroy tissues, such as the kidney, joints and skin which are the major organs affected in Lupus and Rheumatoid Arthritis." In normal individuals these B cells are tightly controlled and prevented from making autoantibodies.


Shlomchik said the scientific community has known for 15 years that autoantibodies undergo the same processes that generate memory immune responses to viruses. The most important of these processes is called somatic hypermutation, which refers to changes in the genetic code that produces the antibodies. As a result, every immune response contains many subtle variations that critically increase the breadth and strength of the response. There is no other similar process in any cell in mammals, and in B cells it is thought to occur normally in a unique site called the germinal center. However, until now no one had shown where autoantibodies were generated.

The researchers used a strain of mice that were prone to autoimmune diseases to visualize autoreactive B cells. They found that the autoantibody reaction does not take place in the germinal center as previously thought, but in an unusual area of the spleen. The team also demonstrated that somatic hypermutation of autoantibodies occurs outside of the germinal center in this unusual part of the spleen. These findings suggest that in lupus and other autoimmune diseases, B cells that create autoantibodies escape normal controls by proliferating and undergoing somatic hypermutation outside of the germinal center, which is the normal location for these processes.

Other authors on the study included Jacqueline William and Sean Christensen, both MD/Ph.D. students at Yale; and Chad Euler who was a research technician in the Shlomchik lab.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>