Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Yale Researchers Shed Light on B Cells’ Involvement in Autoimmune Diseases like Lupus


Using genetically altered mice, Yale researchers have generated a clearer picture of the origins of B cells and their involvement in autoimmune diseases such as lupus, rheumatoid arthritis and diabetes.

Published in the September 20 issue of Science, the study, led by Mark Shlomchik, M.D., associate professor of laboratory medicine at Yale School of Medicine, looked at B cells’ reactions to its own toxins, known as antigens. B lymphocyte cells normally produce antibodies to viruses and bacteria, which protect against infection. However, when these antibodies are directed toward the body’s own components they are called "autoantibodies," which can cause inflammation and autoimmune disease.

"B cells that react with ’self’ antigens (autoreactive B cells) are very important in the origins of these autoimmune diseases," said Shlomchik. "These B cells make autoantibodies, and also stimulate white blood cells called autoreactive T lymphocytes that destroy tissues, such as the kidney, joints and skin which are the major organs affected in Lupus and Rheumatoid Arthritis." In normal individuals these B cells are tightly controlled and prevented from making autoantibodies.

Shlomchik said the scientific community has known for 15 years that autoantibodies undergo the same processes that generate memory immune responses to viruses. The most important of these processes is called somatic hypermutation, which refers to changes in the genetic code that produces the antibodies. As a result, every immune response contains many subtle variations that critically increase the breadth and strength of the response. There is no other similar process in any cell in mammals, and in B cells it is thought to occur normally in a unique site called the germinal center. However, until now no one had shown where autoantibodies were generated.

The researchers used a strain of mice that were prone to autoimmune diseases to visualize autoreactive B cells. They found that the autoantibody reaction does not take place in the germinal center as previously thought, but in an unusual area of the spleen. The team also demonstrated that somatic hypermutation of autoantibodies occurs outside of the germinal center in this unusual part of the spleen. These findings suggest that in lupus and other autoimmune diseases, B cells that create autoantibodies escape normal controls by proliferating and undergoing somatic hypermutation outside of the germinal center, which is the normal location for these processes.

Other authors on the study included Jacqueline William and Sean Christensen, both MD/Ph.D. students at Yale; and Chad Euler who was a research technician in the Shlomchik lab.

Karen N. Peart | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>