Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale Researchers Shed Light on B Cells’ Involvement in Autoimmune Diseases like Lupus

01.10.2002


Using genetically altered mice, Yale researchers have generated a clearer picture of the origins of B cells and their involvement in autoimmune diseases such as lupus, rheumatoid arthritis and diabetes.



Published in the September 20 issue of Science, the study, led by Mark Shlomchik, M.D., associate professor of laboratory medicine at Yale School of Medicine, looked at B cells’ reactions to its own toxins, known as antigens. B lymphocyte cells normally produce antibodies to viruses and bacteria, which protect against infection. However, when these antibodies are directed toward the body’s own components they are called "autoantibodies," which can cause inflammation and autoimmune disease.

"B cells that react with ’self’ antigens (autoreactive B cells) are very important in the origins of these autoimmune diseases," said Shlomchik. "These B cells make autoantibodies, and also stimulate white blood cells called autoreactive T lymphocytes that destroy tissues, such as the kidney, joints and skin which are the major organs affected in Lupus and Rheumatoid Arthritis." In normal individuals these B cells are tightly controlled and prevented from making autoantibodies.


Shlomchik said the scientific community has known for 15 years that autoantibodies undergo the same processes that generate memory immune responses to viruses. The most important of these processes is called somatic hypermutation, which refers to changes in the genetic code that produces the antibodies. As a result, every immune response contains many subtle variations that critically increase the breadth and strength of the response. There is no other similar process in any cell in mammals, and in B cells it is thought to occur normally in a unique site called the germinal center. However, until now no one had shown where autoantibodies were generated.

The researchers used a strain of mice that were prone to autoimmune diseases to visualize autoreactive B cells. They found that the autoantibody reaction does not take place in the germinal center as previously thought, but in an unusual area of the spleen. The team also demonstrated that somatic hypermutation of autoantibodies occurs outside of the germinal center in this unusual part of the spleen. These findings suggest that in lupus and other autoimmune diseases, B cells that create autoantibodies escape normal controls by proliferating and undergoing somatic hypermutation outside of the germinal center, which is the normal location for these processes.

Other authors on the study included Jacqueline William and Sean Christensen, both MD/Ph.D. students at Yale; and Chad Euler who was a research technician in the Shlomchik lab.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>