Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale Researchers Shed Light on B Cells’ Involvement in Autoimmune Diseases like Lupus

01.10.2002


Using genetically altered mice, Yale researchers have generated a clearer picture of the origins of B cells and their involvement in autoimmune diseases such as lupus, rheumatoid arthritis and diabetes.



Published in the September 20 issue of Science, the study, led by Mark Shlomchik, M.D., associate professor of laboratory medicine at Yale School of Medicine, looked at B cells’ reactions to its own toxins, known as antigens. B lymphocyte cells normally produce antibodies to viruses and bacteria, which protect against infection. However, when these antibodies are directed toward the body’s own components they are called "autoantibodies," which can cause inflammation and autoimmune disease.

"B cells that react with ’self’ antigens (autoreactive B cells) are very important in the origins of these autoimmune diseases," said Shlomchik. "These B cells make autoantibodies, and also stimulate white blood cells called autoreactive T lymphocytes that destroy tissues, such as the kidney, joints and skin which are the major organs affected in Lupus and Rheumatoid Arthritis." In normal individuals these B cells are tightly controlled and prevented from making autoantibodies.


Shlomchik said the scientific community has known for 15 years that autoantibodies undergo the same processes that generate memory immune responses to viruses. The most important of these processes is called somatic hypermutation, which refers to changes in the genetic code that produces the antibodies. As a result, every immune response contains many subtle variations that critically increase the breadth and strength of the response. There is no other similar process in any cell in mammals, and in B cells it is thought to occur normally in a unique site called the germinal center. However, until now no one had shown where autoantibodies were generated.

The researchers used a strain of mice that were prone to autoimmune diseases to visualize autoreactive B cells. They found that the autoantibody reaction does not take place in the germinal center as previously thought, but in an unusual area of the spleen. The team also demonstrated that somatic hypermutation of autoantibodies occurs outside of the germinal center in this unusual part of the spleen. These findings suggest that in lupus and other autoimmune diseases, B cells that create autoantibodies escape normal controls by proliferating and undergoing somatic hypermutation outside of the germinal center, which is the normal location for these processes.

Other authors on the study included Jacqueline William and Sean Christensen, both MD/Ph.D. students at Yale; and Chad Euler who was a research technician in the Shlomchik lab.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>