Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers model blood flow

18.09.2002


A computer simulation that shows how branches and bends in blood vessels disturb smooth-flowing blood and contribute to heart disease has been built by researchers at the University of California, Davis. Eventually, it could be possible to use such models to predict the risk of some types of heart disease.



Every minute at rest the heart pumps out about five liters, or more than a gallon, of blood. The swirls and eddies of that blood could help determine where fatty plaques build up, damaging blood vessels and eventually leading to heart disease.

Mechanical engineers Abdul Barakat and Harry Dwyer, mathematician Angela Cheer and postdoctoral researchers Nader Shahcheraghi and Thomas Rutaganira built the model by studying CAT scans of the aorta, the major vessel carrying blood from the heart.


The aorta rises out of the heart and then bends over in a candy-cane shape, taking blood to the abdomen and the legs. Three major arteries branch off the top of the bend, taking blood to the upper body, head and heart itself.

The model shows how disturbed flows form in places such as the inside wall of curves and around branch points. Disturbed flows could play a role in the early stages of atherosclerosis, when fatty plaques form on the blood vessel walls, Barakat said. Oscillating flows, where the blood swooshes back and forth, seem to cause the most damage, Barakat said. The computer models can predict where this effect is likely to happen under different conditions.

Aorta shape varies slightly between individuals and could be an inherited risk factor for heart disease, Barakat said.

Eventually, it could be possible to image a patient’s aorta by CAT scan, put that image into a computer model and see how it performs under different conditions, allowing doctors to assess the risk of atherosclerotic disease due to disturbed flows, Barakat said.

Details of the model are published in the August issue of the Journal of Biomechanical Engineering.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>