Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers model blood flow

18.09.2002


A computer simulation that shows how branches and bends in blood vessels disturb smooth-flowing blood and contribute to heart disease has been built by researchers at the University of California, Davis. Eventually, it could be possible to use such models to predict the risk of some types of heart disease.



Every minute at rest the heart pumps out about five liters, or more than a gallon, of blood. The swirls and eddies of that blood could help determine where fatty plaques build up, damaging blood vessels and eventually leading to heart disease.

Mechanical engineers Abdul Barakat and Harry Dwyer, mathematician Angela Cheer and postdoctoral researchers Nader Shahcheraghi and Thomas Rutaganira built the model by studying CAT scans of the aorta, the major vessel carrying blood from the heart.


The aorta rises out of the heart and then bends over in a candy-cane shape, taking blood to the abdomen and the legs. Three major arteries branch off the top of the bend, taking blood to the upper body, head and heart itself.

The model shows how disturbed flows form in places such as the inside wall of curves and around branch points. Disturbed flows could play a role in the early stages of atherosclerosis, when fatty plaques form on the blood vessel walls, Barakat said. Oscillating flows, where the blood swooshes back and forth, seem to cause the most damage, Barakat said. The computer models can predict where this effect is likely to happen under different conditions.

Aorta shape varies slightly between individuals and could be an inherited risk factor for heart disease, Barakat said.

Eventually, it could be possible to image a patient’s aorta by CAT scan, put that image into a computer model and see how it performs under different conditions, allowing doctors to assess the risk of atherosclerotic disease due to disturbed flows, Barakat said.

Details of the model are published in the August issue of the Journal of Biomechanical Engineering.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>