Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reverses muscular dystrophy in animal model

17.09.2002


Researchers have proven that gene therapy can reverse the pathological features of muscular dystrophy in an animal model. Before, gene therapy had only been able to prevent further muscle-wasting in mice. "We expect to build on these results in the continuing search for a way to treat a horrible disease. Our results indicate that gene therapy could be used not only to halt or prevent this disease, but also to restore normal muscle function in older patients," says Dr. Jeffrey S. Chamberlain, professor of neurology at the University of Washington School of Medicine in Seattle.



Chamberlain is the senior author of the paper describing the results, which will be published in the Proceedings of the National Academy of Sciences online Early Edition the week of Sept. 16 to 20.

Duchenne muscular dystrophy is an X-linked genetic disorder that strikes one of every 3,500 newborn boys. The genetic disorder means the body does not produce the dystrophin protein, which is necessary for the structural support of muscle. Without this protein, muscles weaken to the point where the victim cannot survive. There is no specific treatment against any form of muscular dystrophy, except for supportive measures, such as physical therapy, assistive technology and corrective surgery. Boys and men with the disorder usually die from respiratory failure before they can turn 25.


Researchers have been looking for many years for ways to introduce the dystrophin gene into the body of patients to replace the missing gene. In doing so, researchers have developed a strain of mice who lack the dystrophin gene. In the past, researchers have been able to insert the gene into newborn mice via adenoviral vectors. But those vectors have many viral properties, and results have been limited because adult mice and mice that have begun to develop symptoms of the disease developed a sharp host immune response that eliminated the therapeutic gene.

The results have also been limited because the dystrophin gene is large, and until now, there has not been a good way to deliver the entire gene and have it remain in the muscles of the mice. Last spring, Chamberlain and colleagues reported they were able to deliver a "micro" version of the dystrophin gene. Even the micro version appeared able to reverse the muscle-wasting process, but it was not as effective as the full gene.

However, in the Sept. 16 paper, Chamberlain and colleagues describe how they developed A stripped-down vectors that did not raise a host immune response and which delivered the full-length, muscle-specific dystrophin gene. They showed that the full gene could be delivered to muscles of young and old mice, even well after severe muscle damage had developed. Also, they showed that normal muscle function was restored to a level that directly correlated with the amount of the gene that was delivered.

"These results are extremely encouraging. We have shown that replacing the dystrophin gene will correct this disease, even in older animals. In future research, we hope to develop better methods to deliver the gene to all the muscles of the body, as currently we are limited to treating relatively small muscles. We believe these results also support the need to move forward with human clinical trials to assess the safety of these methods in patients," Chamberlain said.

The research was funded by grants from the National Institutes of Health, the Muscular Dystrophy Association and the Apex Foundation, a family foundation established by Bruce and Jolene McCaw. Other authors of the paper include Christiana DelloRusso, the lead author, of the UW Departments of Physiology and Neurology; Jeannine M. Scott, Dennis Hartigan-O’Connor and Robert W. Crawford of the Department of Neurology; former UW researchers Giovanni Salvatori, Catherine Barjot and Ann S. Robinson, and Susan V. Brooks of the University of Michigan.

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>