Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer diet for prostate cancer

02.07.2008
Eating one or more portions of broccoli every week can reduce the risk of prostate cancer, and the risk of localised cancer becoming more aggressive.

For the first time, a research group at the Institute of Food Research led by Professor Richard Mithen has provided an explanation of how eating broccoli might reduce cancer risk based upon studies in men, as opposed to trying to extrapolate from animal models.

Prostate cancer is the most common non-skin cancer for males in western countries. The research has provided an insight into why eating broccoli can help men stay healthy.

For the study to be published in PLoS ONE on 2nd July, men who were at risk of developing prostate cancer ate either 400g of broccoli or 400g of peas per week in addition to their normal diet over 12 months. Tissue samples were taken from their prostate gland before the start of the trial and after 6 and 12 months, and the expression of every gene measured using Affymetrix microarray technology.

It was found that there were more changes in gene expression in men who were on the broccoli-rich diet than on the pea diet, and these changes may be associated with the reduction in the risk of developing cancer, that has been reported in epidemiological studies.

Previous studies have suggested that the fifty percent of the population who have a GSTM1 gene gain more benefit from eating broccoli than those who lack this gene. The study showed that the presence of the GSTM1 gene had a profound effect on the changes in gene expression caused by eating broccoli.

This study fills the gap between observational studies and studies with cell and animal models. While observational studies have shown that diets rich in cruciferous vegetables may reduce the risk of prostate cancer and other chronic disease, they do not provide an explanation of how this occurs. Evidence from animal and cell models has sought to provide an explanation, but these studies are usually based on high doses that would not normally be experienced as part of the diet.

The results of the study suggested that relatively low amounts of cruciferous vegetables in the diet – a few portions per week – can have large effects on gene expression by changing cell signalling pathways. These signalling pathways are the routes by which information is transmitted through a molecular cascade which amplifies the signal to the nucleus of the cell where gene expression occurs.

The Norwich team are currently planning a larger study with men with localised prostate cancer, and will compare the activity of standard broccoli with the special variety of high glucosinolate broccoli used in the current study.

Designer studies for health promotion

“Other fruits and vegetables have been shown to also reduce the risk of prostate cancer and are likely to act through other mechanisms,” says Professor Mithen.

“Once we understand these, we can provide much better dietary advice in which specific combinations of fruit and vegetable are likely to be particularly beneficial. Until then, eating two or three portions of cruciferous vegetable per week, and maybe a few more if you lack the GSTM1 gene, should be encouraged.”

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.plosone.org/doi/pone.0002568

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>