Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer diet for prostate cancer

02.07.2008
Eating one or more portions of broccoli every week can reduce the risk of prostate cancer, and the risk of localised cancer becoming more aggressive.

For the first time, a research group at the Institute of Food Research led by Professor Richard Mithen has provided an explanation of how eating broccoli might reduce cancer risk based upon studies in men, as opposed to trying to extrapolate from animal models.

Prostate cancer is the most common non-skin cancer for males in western countries. The research has provided an insight into why eating broccoli can help men stay healthy.

For the study to be published in PLoS ONE on 2nd July, men who were at risk of developing prostate cancer ate either 400g of broccoli or 400g of peas per week in addition to their normal diet over 12 months. Tissue samples were taken from their prostate gland before the start of the trial and after 6 and 12 months, and the expression of every gene measured using Affymetrix microarray technology.

It was found that there were more changes in gene expression in men who were on the broccoli-rich diet than on the pea diet, and these changes may be associated with the reduction in the risk of developing cancer, that has been reported in epidemiological studies.

Previous studies have suggested that the fifty percent of the population who have a GSTM1 gene gain more benefit from eating broccoli than those who lack this gene. The study showed that the presence of the GSTM1 gene had a profound effect on the changes in gene expression caused by eating broccoli.

This study fills the gap between observational studies and studies with cell and animal models. While observational studies have shown that diets rich in cruciferous vegetables may reduce the risk of prostate cancer and other chronic disease, they do not provide an explanation of how this occurs. Evidence from animal and cell models has sought to provide an explanation, but these studies are usually based on high doses that would not normally be experienced as part of the diet.

The results of the study suggested that relatively low amounts of cruciferous vegetables in the diet – a few portions per week – can have large effects on gene expression by changing cell signalling pathways. These signalling pathways are the routes by which information is transmitted through a molecular cascade which amplifies the signal to the nucleus of the cell where gene expression occurs.

The Norwich team are currently planning a larger study with men with localised prostate cancer, and will compare the activity of standard broccoli with the special variety of high glucosinolate broccoli used in the current study.

Designer studies for health promotion

“Other fruits and vegetables have been shown to also reduce the risk of prostate cancer and are likely to act through other mechanisms,” says Professor Mithen.

“Once we understand these, we can provide much better dietary advice in which specific combinations of fruit and vegetable are likely to be particularly beneficial. Until then, eating two or three portions of cruciferous vegetable per week, and maybe a few more if you lack the GSTM1 gene, should be encouraged.”

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.plosone.org/doi/pone.0002568

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>