Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Changes in the Brain's Vascular System Occur after Menopause

19.06.2008
MU researchers advise extreme caution in prescribing estrogen-based hormone therapy

Many women experience menopausal changes in their body including hot flashes, moodiness and fatigue, but the changes they don’t notice can be more dangerous.

In a new study, researchers at the University of Missouri have discovered significant changes in the brain’s vascular system when the ovaries stop producing estrogen. MU scientists predict that currently used estrogen-based hormone therapies may complicate this process and may do more harm than good in postmenopausal women.

"Before menopause, women are much more protected from certain conditions such as heart disease and stroke, but these vascular changes might explain why women lose this protection after menopause," said Olga Glinskii, research assistant professor of medical pharmacology and physiology in MU’s School of Medicine and lead author of the study. “Because the body eventually will naturally adapt to the loss of estrogen, we advise extreme caution when using estrogen-based therapy in postmenopausal women.”

In their study, MU researchers removed the ovaries of pigs, which have a reproductive cycle similar to humans, to create postmenopausal conditions. Two months after the ovaries were removed, they observed dramatic differences in the brain’s vascular system. There was a huge loss of micro vessels, and blood vessels became “leaky.”

“Eventually, however, the body starts to recognize that it needs blood vessels and starts to adapt through natural responses,” said Vladislav Glinskii, assistant professor of pathology and anatomical sciences in MU’s School of Medicine, research health scientist at Harry S. Truman Memorial Veterans' Hospital and co-senior author of the study. “If we start adding estrogen to a system that is learning to adapt without it, we upset this transition process. What happens to the vascular system during menopause is complex on many different levels, and we do not know enough to determine the best way to use hormone therapy.

Before menopause, the vascular system depends on estrogen for maintenance. When the body decreases its estrogen production, the body is unable to regulate blood vessels like it did before. After a period of deterioration, the body learns to adapt to the estrogen loss and eventually maintains the system in a different way.

“The vascular system is like a roadmap that is always changing,” said Virginia Huxley, director of the National Center for Gender Physiology, professor of medical pharmacology and physiology in MU’s School of Medicine, and co-senior author of the study. “The blood vessels are the highways that transport oxygen and other nutrients in our body. After menopause, women are more likely to develop vascular diseases in the ‘side streets’ or the tiny vessels. In these vessels, the symptoms are more subtle and harder to identify.”

The study “PDGF/VEGF System Activation and Angiogenesis Following Initial Post Ovariectomy Meningeal Microvessel Loss,” was recently published in Cell Cycle.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>