Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Changes in the Brain's Vascular System Occur after Menopause

19.06.2008
MU researchers advise extreme caution in prescribing estrogen-based hormone therapy

Many women experience menopausal changes in their body including hot flashes, moodiness and fatigue, but the changes they don’t notice can be more dangerous.

In a new study, researchers at the University of Missouri have discovered significant changes in the brain’s vascular system when the ovaries stop producing estrogen. MU scientists predict that currently used estrogen-based hormone therapies may complicate this process and may do more harm than good in postmenopausal women.

"Before menopause, women are much more protected from certain conditions such as heart disease and stroke, but these vascular changes might explain why women lose this protection after menopause," said Olga Glinskii, research assistant professor of medical pharmacology and physiology in MU’s School of Medicine and lead author of the study. “Because the body eventually will naturally adapt to the loss of estrogen, we advise extreme caution when using estrogen-based therapy in postmenopausal women.”

In their study, MU researchers removed the ovaries of pigs, which have a reproductive cycle similar to humans, to create postmenopausal conditions. Two months after the ovaries were removed, they observed dramatic differences in the brain’s vascular system. There was a huge loss of micro vessels, and blood vessels became “leaky.”

“Eventually, however, the body starts to recognize that it needs blood vessels and starts to adapt through natural responses,” said Vladislav Glinskii, assistant professor of pathology and anatomical sciences in MU’s School of Medicine, research health scientist at Harry S. Truman Memorial Veterans' Hospital and co-senior author of the study. “If we start adding estrogen to a system that is learning to adapt without it, we upset this transition process. What happens to the vascular system during menopause is complex on many different levels, and we do not know enough to determine the best way to use hormone therapy.

Before menopause, the vascular system depends on estrogen for maintenance. When the body decreases its estrogen production, the body is unable to regulate blood vessels like it did before. After a period of deterioration, the body learns to adapt to the estrogen loss and eventually maintains the system in a different way.

“The vascular system is like a roadmap that is always changing,” said Virginia Huxley, director of the National Center for Gender Physiology, professor of medical pharmacology and physiology in MU’s School of Medicine, and co-senior author of the study. “The blood vessels are the highways that transport oxygen and other nutrients in our body. After menopause, women are more likely to develop vascular diseases in the ‘side streets’ or the tiny vessels. In these vessels, the symptoms are more subtle and harder to identify.”

The study “PDGF/VEGF System Activation and Angiogenesis Following Initial Post Ovariectomy Meningeal Microvessel Loss,” was recently published in Cell Cycle.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>