Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Changes in the Brain's Vascular System Occur after Menopause

19.06.2008
MU researchers advise extreme caution in prescribing estrogen-based hormone therapy

Many women experience menopausal changes in their body including hot flashes, moodiness and fatigue, but the changes they don’t notice can be more dangerous.

In a new study, researchers at the University of Missouri have discovered significant changes in the brain’s vascular system when the ovaries stop producing estrogen. MU scientists predict that currently used estrogen-based hormone therapies may complicate this process and may do more harm than good in postmenopausal women.

"Before menopause, women are much more protected from certain conditions such as heart disease and stroke, but these vascular changes might explain why women lose this protection after menopause," said Olga Glinskii, research assistant professor of medical pharmacology and physiology in MU’s School of Medicine and lead author of the study. “Because the body eventually will naturally adapt to the loss of estrogen, we advise extreme caution when using estrogen-based therapy in postmenopausal women.”

In their study, MU researchers removed the ovaries of pigs, which have a reproductive cycle similar to humans, to create postmenopausal conditions. Two months after the ovaries were removed, they observed dramatic differences in the brain’s vascular system. There was a huge loss of micro vessels, and blood vessels became “leaky.”

“Eventually, however, the body starts to recognize that it needs blood vessels and starts to adapt through natural responses,” said Vladislav Glinskii, assistant professor of pathology and anatomical sciences in MU’s School of Medicine, research health scientist at Harry S. Truman Memorial Veterans' Hospital and co-senior author of the study. “If we start adding estrogen to a system that is learning to adapt without it, we upset this transition process. What happens to the vascular system during menopause is complex on many different levels, and we do not know enough to determine the best way to use hormone therapy.

Before menopause, the vascular system depends on estrogen for maintenance. When the body decreases its estrogen production, the body is unable to regulate blood vessels like it did before. After a period of deterioration, the body learns to adapt to the estrogen loss and eventually maintains the system in a different way.

“The vascular system is like a roadmap that is always changing,” said Virginia Huxley, director of the National Center for Gender Physiology, professor of medical pharmacology and physiology in MU’s School of Medicine, and co-senior author of the study. “The blood vessels are the highways that transport oxygen and other nutrients in our body. After menopause, women are more likely to develop vascular diseases in the ‘side streets’ or the tiny vessels. In these vessels, the symptoms are more subtle and harder to identify.”

The study “PDGF/VEGF System Activation and Angiogenesis Following Initial Post Ovariectomy Meningeal Microvessel Loss,” was recently published in Cell Cycle.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>