Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers develop new PET scanning probe that will allowing monitoring of the immune system

10.06.2008
Probe also will help monitor response to new therapies

Researchers at UCLA's Jonsson Comprehensive Cancer Center have modified a common chemotherapy drug to create a new probe for Positron Emission Tomography (PET), an advance that will allow them to model and measure the immune system in action and monitor response to new therapies.

The discovery, published June 8, 2008 in the early online edition of the journal Nature Medicine, enables scientists to monitor the immune system – at the whole body level in 3D – as it tries to fight some cancers or when it goes awry as it does in autoimmune diseases.

Researchers created the small molecule, called FAC, by slightly altering the molecular structure of one of the most commonly used chemotherapy drugs, gemcitabine. They then added a radiolabel so the cells that take in the probe can be seen during PET scanning.

The probe is based on a fundamental cell biochemical pathway called the DNA Salvage Pathway, which acts as a sort of recycling mechanism that helps with DNA replication and repair. All cells use this biochemical pathway to different degrees. But in lymphocytes and macrophages, the cells of the immune system that initiate immune response, the pathway is activated at very high levels. Because of that, the probe accumulates at high levels in those cells, said Dr. Owen Witte, a researcher at UCLA's Jonsson Cancer Center, a Howard Hughes Medical Institute investigator and senior author of the study.

"This is not a cure or a new treatment, but it will help us to more effectively model and measure the immune system," said Witte, who also serves as director of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. "Monitoring immune function using molecular imaging could significantly impact the diagnosis and treatment evaluation of immunological disorders, as well as evaluating whether certain therapies are effective."

Because the probe is labeled with positron emitting particles, cells that take it in glow "hot" under PET scanning, which operates as a molecular camera that enables visualization of biological processes in living organisms. The work, done in animal models, will be further evaluated in subsequent studies. Eventually, Witte said, researchers hope to be able to monitor the immune systems of patients with FAC and other PET probes.

"This measurement is not invasive - it involves a simple injection of the probe," Witte said. "We could do repetitive scans in a single week to monitor immune response."

Using conventional methods, oncologists are forced to wait weeks and often months to determine whether a patient is responding to a therapy. CT and MRI scans are taken before and during treatment and the size of the tumor is measured to determine response – if the tumor is shrinking, the patient is responding. However, patients that don't respond are exposed to potentially toxic therapies for longer than necessary. If the new PET probe can monitor immune response and response to treatment much more quickly – within a week or two – patients would be spared from therapies that aren't working.

One frustrating aspect for many cancer researchers is understanding the role of the immune response in fighting or, in some cases, possibly stimulating tumor growth, said Dr. Kevin Shannon, the Auerback Distinguished Professor of Molecular Oncology at the University of California, San Francisco.

"Dynamic probes like the one developed by UCLA scientists will allow researchers to learn more about the role of the immune response in cancer, how current treatments affect immune cells, and will allow them to quantitatively monitor responses to new modalities such as tumor vaccines," Shannon said. "Probes of this type may also help oncologists more rapidly identify tumors that will respond to certain drugs so treatments can be made more patient-specific."

Witte said the type of multidisciplinary research that led to development of the probe is uniquely suited to UCLA's collaborative strengths. Researchers from the cancer center, the Broad stem cell center and the Crump Institute for Molecular Imaging took part in the study. The PET scanner was invented by UCLA's Michael Phelps, also a co-author on this study.

The work by Witte and his colleagues was prompted by the desire to add to a short list of probes now used in PET scanning and to develop new probes that monitor different molecular functions than the current probes.

"What we wanted to do was to develop new ways to look inside a living organism and gather as much information as we can about the immune system," said Caius Radu, an assistant professor of molecular and medical pharmacology, a Jonsson Cancer Center researcher and the first author of the study. "We wanted to know how cells move from one site in the body to another and find a way to trace them to tumors."

In previous studies, Witte and other UCLA researchers were able to track the immune system as it recognized and responded to cancer. But in those studies, the cells had to be modified with "reporter" genes that sequestered a specifically designed PET probe that allowed scientists to monitor them. The new probe doesn't require modified cells, making it easier and less expensive to use and giving it far broader applications than existing probes. In addition to modeling and measuring the immune system, those applications include stratifying different types of cancers and their response to therapy, defining the level of immune response in both normal and pathological situations and helping to determine whether new drugs prompt an immune response to cancer and other diseases.

"This probe will tell us things about the immune system that existing probes can't," said Radu, who also is a member of the Crump Institute for Molecular Imaging.

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>