Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers switch off cancer gene; trick cells to self desruct

05.07.2002


Researchers at Stanford University Medical Center have tricked cancer cells into self- destructing by briefly disabling a cancer-causing gene. Although the gene revs back up after deactivation, the brief hiatus gives the affected cells a chance to alter their cancerous destiny. This work in mice could open new avenues for treating some human cancers, researchers believe.



Cancer usually results after a cell accumulates a handful of mutations in cancer-related genes called oncogenes or tumor-suppressor genes. Researchers had thought that cancer cells would side-step attempts to fix any single genetic change, especially after treatment ends. But in a study published in the July 5 issue of Science, researchers found that by briefly tinkering with only one mutant gene they could forever alter the course of the cancer.

"Nobody had ever seen that turning off a cancer gene for a few days caused irreversible change," said Dean Felsher, MD, PhD, assistant professor of oncology and lead researcher on the study. "Most people thought that cancer would come back once treatment that turned off an oncogene stopped."


Felsher and his colleagues worked with a gene called MYC, which normally tells a cell when to grow or divide. In many types of cancers, such as lymphoma, breast, colon, and prostate, this gene produces excess protein that allows the rapid growth characteristic of cancer cells. "Anything you learn about MYC should be applicable to a lot of tumors," Felsher said. He added that because the gene is so important, any results may carry significant weight.

Felsher created bone cancer cells containing an altered version of MYC that could be shut down by adding a molecular off switch. He then injected those cells into mice, which went on to develop bone cancer. When he fed mice the off switch, MYC production stopped and the cancer cells quickly reverted to normal bone cells. After 10 days, he stopped treatment, allowing the gene to resume churning out protein. Instead of restarting cancerous growth, the cells died.

Mice that had their MYC gene switched off for 10 days survived four times longer than untreated mice with bone cancer. The cancer resurfaced in some of the treated mice, but went back into remission with another round of temporary MYC-disabling treatment. "You don’t always need to shut the oncogene off permanently," Felsher said. "That could change the way you think about treating cancer."

Felsher cautioned that his current results may not apply to all cancers. His previous work shows that MYC - like all oncogenes - is a complicated gene that can contribute to cancer by many different mechanisms. Depending on which role the gene is playing in the cell, the effects of shutting it off may vary. "We are trying to understand the genetics of when shutting off MYC will work," Felsher said.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.


Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>