Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers switch off cancer gene; trick cells to self desruct

05.07.2002


Researchers at Stanford University Medical Center have tricked cancer cells into self- destructing by briefly disabling a cancer-causing gene. Although the gene revs back up after deactivation, the brief hiatus gives the affected cells a chance to alter their cancerous destiny. This work in mice could open new avenues for treating some human cancers, researchers believe.



Cancer usually results after a cell accumulates a handful of mutations in cancer-related genes called oncogenes or tumor-suppressor genes. Researchers had thought that cancer cells would side-step attempts to fix any single genetic change, especially after treatment ends. But in a study published in the July 5 issue of Science, researchers found that by briefly tinkering with only one mutant gene they could forever alter the course of the cancer.

"Nobody had ever seen that turning off a cancer gene for a few days caused irreversible change," said Dean Felsher, MD, PhD, assistant professor of oncology and lead researcher on the study. "Most people thought that cancer would come back once treatment that turned off an oncogene stopped."


Felsher and his colleagues worked with a gene called MYC, which normally tells a cell when to grow or divide. In many types of cancers, such as lymphoma, breast, colon, and prostate, this gene produces excess protein that allows the rapid growth characteristic of cancer cells. "Anything you learn about MYC should be applicable to a lot of tumors," Felsher said. He added that because the gene is so important, any results may carry significant weight.

Felsher created bone cancer cells containing an altered version of MYC that could be shut down by adding a molecular off switch. He then injected those cells into mice, which went on to develop bone cancer. When he fed mice the off switch, MYC production stopped and the cancer cells quickly reverted to normal bone cells. After 10 days, he stopped treatment, allowing the gene to resume churning out protein. Instead of restarting cancerous growth, the cells died.

Mice that had their MYC gene switched off for 10 days survived four times longer than untreated mice with bone cancer. The cancer resurfaced in some of the treated mice, but went back into remission with another round of temporary MYC-disabling treatment. "You don’t always need to shut the oncogene off permanently," Felsher said. "That could change the way you think about treating cancer."

Felsher cautioned that his current results may not apply to all cancers. His previous work shows that MYC - like all oncogenes - is a complicated gene that can contribute to cancer by many different mechanisms. Depending on which role the gene is playing in the cell, the effects of shutting it off may vary. "We are trying to understand the genetics of when shutting off MYC will work," Felsher said.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.


Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>