Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental agent blocks prostate cancer in animal study

27.05.2008
An experimental drug has blocked the progression of prostate cancer in an animal model with an aggressive form of the disease, new research shows.

The agent, OSU-HDAC42, belongs to a new class of drugs called histone deacetylase (HDAC) inhibitors, compounds designed to reactivate genes that normally protect against cancer but are turned off by the cancer process.

The study, conducted by the Ohio State University Comprehensive Cancer Center researchers who also developed the drug, showed that the agent kept mice with a precancerous condition from developing advanced prostate cancer.

Instead, the animals either remained at the precancerous stage, called prostatic intraepithelial neoplasia (PIN), or they developed benign enlargements of the prostate called adenomas. The main side effect of the treatment was a reversible shrinkage of the testicles.

Of the animals not given the drug, 74 percent developed advanced prostate cancer.

The findings are reported in the May 15 issue of the journal Cancer Research. Human testing of the compound is expected to begin early next year.

“This study shows that an agent with a specific molecular target can dramatically inhibit prostate cancer development in an aggressive model of the disease,” says coauthor Dr. Steven Clinton, director of the prostate and genitourinary oncology clinic at Ohio State’s James Cancer Hospital and Solove Research Institute. “We hope to see this agent in clinical trials soon and ultimately used for prostate-cancer prevention or therapy.”

Furthermore, when the drug treatment was stopped after 24 weeks, two of the animals were followed for an additional 18 weeks. The animals developed adenomas but were alive after 42 weeks, well beyond their normal 32-week life span.

“The drug not only kept the animals cancer free, but also prolonged their life span,” says Ching-Shih Chen, who led the drug’s development and the new study at the Comprehensive Cancer Center. Chen is also professor of pharmacy and of internal medicine.

A veterinary pathologist on the study, first author Aaron Sargeant, graduate research associate in veterinary biosciences, was intrigued that adenomas occurred in the treated animals. “Adenomas are not commonly found to be part of prostate-cancer development in this system,” he says. “This drug appears to shift tumor progression from its usual aggressive course to a more benign direction.”

For this study, Chen, Sargeant, Clinton and their colleagues used a strain of transgenic mice that develops PIN at about six weeks of age, then progresses to advanced prostate cancer by 24 to 32 weeks.

The researchers added the drug to the diet of 23 of the cancer-prone mice beginning at six weeks of age, when the animals develop the precancerous condition, and continued the treatment for 18 weeks.

They then examined the animals. Of the treated mice, one showed signs of early stage cancer, but 12 still had only the precancerous condition and 10 had adenomas.

In contrast, 17 of 23 control animals developed advanced prostate cancer, two had early stage cancer, three had the precancerous condition and one an adenoma.

Experiments using a nontransgenic strain of the same mouse – they do not develop prostate cancer – showed that the degeneration of the testicles that accompanied the drug treatment was reversible when the drug treatment stops.

Chen noted that 186,320 cases of prostate cancer are expected this year, with 28,660 deaths from the disease. “Our findings are very exciting, considering that an agent capable of reducing prostate-cancer risk by only 10 percent could prevent 18,600 cases of the disease in the United States each year,” Chen says.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>