Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers create biosensors to protect nation’s food and water supplies

25.06.2002


Unlike nuclear terrorism, bioterrorism won’t begin with a bang. It will begin with a whimper — a child feeling the effects of food poisoning.



E.coli, Listeria, Campylobacter, Salmonella are not weapons of mass destruction, they are weapons of mass disruption. Experts say it’s not a matter of if but when terrorists will attempt a strike at our food or water supply. If they succeed, hundreds, perhaps thousands, of Americans will become sick, and some among the youngest and oldest victims could die.

An early warning detection system is urgently needed. At Clemson University, researchers are developing a biosensor that will make contaminated food glow in the dark.


A team of chemists, microbiologists and food scientists have devised a way to tether luminescent molecules to food pathogens, such as E.coli, and Salmonella. Using nanotechnology, the researchers are building a new screening method to protect our food supply.

"What’s needed is a simple, low cost way to rapidly detect pathogens at the site of contamination, not having to wait for lab results," said food science professor and team leader Paul Dawson. "What we have worked on are particles that are luminescent, providing a way to flash an alarm to hold the food for closer examination."

Chemists used a similar technique to identify worms in pecans. The worms would absorb a chemical that would glow under UV or "black" light. Dawson, along with professors Ya-Ping Sun, Xiuping Jiang, Feng Chen and James C. Acton, have miniaturized the process by applying nanotechnology, the science of building structures at molecular and atomic levels. It is not just the science of the very small, it is a technology, enabling the practical application of that knowledge by scientists who investigate arranging atoms to create innovations that can be seen only with electron microscopes.

Nature does a great job of putting together molecules and other nanoscale components in complex patterns, Dawson said. His team is working on a single molecule process, creating a "protein key" that would "key and lock" with another molecule and creating a bio-alarm, when key and lock fit. Most pathogens and toxins have a unique "lock," and by attaching the matching "key" on the surface of a luminescing nanoparticle, a nanosensor can be created. The sensor signal can be rapidly detected and be a first line of defense in identifying food or water that has been contaminated.

"The nanoparticle can move into crevices in the food source, where a pathogen could be hidden from microscopic view," Dawson said. "The particle’s extremely small size increases the odds that the antibody and antigen will link, enabling the sensor to give off a glow. The more connections, the greater the glow."

Derived from the Greek word for midget, "nano" means a billionth part. A nanometer (abbreviated nm), for example, is one billionth of a meter. An atom measures about one-third of a nanometer. The diameter of a human hair is about 200,000 nm.

Peter Kent | EurekAlert!

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>