Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers create biosensors to protect nation’s food and water supplies

25.06.2002


Unlike nuclear terrorism, bioterrorism won’t begin with a bang. It will begin with a whimper — a child feeling the effects of food poisoning.



E.coli, Listeria, Campylobacter, Salmonella are not weapons of mass destruction, they are weapons of mass disruption. Experts say it’s not a matter of if but when terrorists will attempt a strike at our food or water supply. If they succeed, hundreds, perhaps thousands, of Americans will become sick, and some among the youngest and oldest victims could die.

An early warning detection system is urgently needed. At Clemson University, researchers are developing a biosensor that will make contaminated food glow in the dark.


A team of chemists, microbiologists and food scientists have devised a way to tether luminescent molecules to food pathogens, such as E.coli, and Salmonella. Using nanotechnology, the researchers are building a new screening method to protect our food supply.

"What’s needed is a simple, low cost way to rapidly detect pathogens at the site of contamination, not having to wait for lab results," said food science professor and team leader Paul Dawson. "What we have worked on are particles that are luminescent, providing a way to flash an alarm to hold the food for closer examination."

Chemists used a similar technique to identify worms in pecans. The worms would absorb a chemical that would glow under UV or "black" light. Dawson, along with professors Ya-Ping Sun, Xiuping Jiang, Feng Chen and James C. Acton, have miniaturized the process by applying nanotechnology, the science of building structures at molecular and atomic levels. It is not just the science of the very small, it is a technology, enabling the practical application of that knowledge by scientists who investigate arranging atoms to create innovations that can be seen only with electron microscopes.

Nature does a great job of putting together molecules and other nanoscale components in complex patterns, Dawson said. His team is working on a single molecule process, creating a "protein key" that would "key and lock" with another molecule and creating a bio-alarm, when key and lock fit. Most pathogens and toxins have a unique "lock," and by attaching the matching "key" on the surface of a luminescing nanoparticle, a nanosensor can be created. The sensor signal can be rapidly detected and be a first line of defense in identifying food or water that has been contaminated.

"The nanoparticle can move into crevices in the food source, where a pathogen could be hidden from microscopic view," Dawson said. "The particle’s extremely small size increases the odds that the antibody and antigen will link, enabling the sensor to give off a glow. The more connections, the greater the glow."

Derived from the Greek word for midget, "nano" means a billionth part. A nanometer (abbreviated nm), for example, is one billionth of a meter. An atom measures about one-third of a nanometer. The diameter of a human hair is about 200,000 nm.

Peter Kent | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>