Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers check brain waves to predict effectiveness of antidepressants

11.06.2002


A new UCLA Neuropsychiatric Institute study shows for the first time that measurable changes in the front of the brain can predict the effectiveness of an antidepressant within days of treatment — weeks before a patient begins to feel better.



Using quantitative EEG, a non-invasive computerized measurement of brain wave patterns, the researchers discovered that specific changes in brain-wave activity precede clinical changes brought on by medication. The new findings, published in the July edition of the peer-reviewed journal Neuropsychopharmacology, could lead to treatment programs that help depression patients feel better faster by cutting evaluation periods from weeks to days. The findings also could aid in the development of new medications.

"Up to 40 percent of depressed patients do not respond to the first medication they try. Since it takes several weeks for an effective treatment to produce clear improvement, doctors often wait six to 12 weeks to decide that a particular medication just isn’t right for that patient and move on to another treatment," said Dr. Ian A. Cook, a researcher at the institute’s Quantitative EEG Laboratory and lead author of the study.


"By comparing EEG measurements before treatment with those soon after treatment begins, doctors may be able to evaluate the usefulness of an antidepressant within days rather than having to wait weeks to months," Cook said. "This technique also could slash the time and costs needed to develop and research new antidepressants."

The study examined 51 adult patients diagnosed with acute depression. Each participated in one of two, double-blind, randomized treatment trials. One group received the antidepressant fluoxetine or placebo. The other received the antidepressant venlafaxine or placebo. (A placebo is an inactive substance, such as a sugar pill.) Each subject received a quantitative EEG prior to treatment, 48 hours after treatment and one week after treatment.

Thirteen of 25 subjects responded to medication, or 52 percent. Ten of 26 subjects responded to placebo, or 38 percent. Subjects who responded to medication uniquely showed significant decreases in cordance, a measure of brain-wave activity, at 48 hours and one week. Clinical changes did not begin to emerge until after four weeks. Subjects with the greatest changes in cordance had the most complete response to the medication after eight weeks. "Other researchers have compared brain scans of depressed people before and after treatment and found differences between those who recovered and those who did not respond. Those findings, however, do not allow prediction of whether a particular patient is likely to get well," said Cook, who also is an assistant professor in the Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine at UCLA. "This is the first study to detect specific changes in brain wave activity that precede the clinical changes in a way that can usefully predict response."

Cook’s group is continuing this work to determine whether this same pattern holds for other antidepressant medications. They are also working to simplify the EEG method to make it easier for doctors to use this approach in patient care.

EEG measurements are performed by placing recording electrodes on the scalp. The electrodes connect to the body through conductive paste or gel, which is easily rinsed from a person’s hair after the test is complete. It does not hurt and involves no radioactivity. The electrodes are connected to a computer, which measures the signals coming from the brain and processes them into colorful patterns.



The study was conducted with funding from the National Alliance for Research in Schizophrenia and Depression, the National Institute of Mental Health, Eli Lilly Co. Inc. and Wyeth-Ayerst Laboratories Inc.

Other UCLA investigators involved in the study include Dr. Andrew F. Leuchter, Melinda Morgan, Elise Witte, Dr. William F. Stubbeman, Michelle Abrams, Susan Rosenberg and Sebastian H.J. Uijtdehaage, all from the UCLA Neuropsychiatric Institute’s Quantitative EEG laboratory.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services, and shape national health policy regarding neuropsychiatric disorders.

Neuropsychopharmacology is published by the American College of Neuropsychopharmacology.

Dan Page | EurekAlert
Further information:
http://www.npi.ucla.edu/
http://www.qeeg.npi.ucla.edu
http://www.depression.ucla.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>