Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers check brain waves to predict effectiveness of antidepressants

11.06.2002


A new UCLA Neuropsychiatric Institute study shows for the first time that measurable changes in the front of the brain can predict the effectiveness of an antidepressant within days of treatment — weeks before a patient begins to feel better.



Using quantitative EEG, a non-invasive computerized measurement of brain wave patterns, the researchers discovered that specific changes in brain-wave activity precede clinical changes brought on by medication. The new findings, published in the July edition of the peer-reviewed journal Neuropsychopharmacology, could lead to treatment programs that help depression patients feel better faster by cutting evaluation periods from weeks to days. The findings also could aid in the development of new medications.

"Up to 40 percent of depressed patients do not respond to the first medication they try. Since it takes several weeks for an effective treatment to produce clear improvement, doctors often wait six to 12 weeks to decide that a particular medication just isn’t right for that patient and move on to another treatment," said Dr. Ian A. Cook, a researcher at the institute’s Quantitative EEG Laboratory and lead author of the study.


"By comparing EEG measurements before treatment with those soon after treatment begins, doctors may be able to evaluate the usefulness of an antidepressant within days rather than having to wait weeks to months," Cook said. "This technique also could slash the time and costs needed to develop and research new antidepressants."

The study examined 51 adult patients diagnosed with acute depression. Each participated in one of two, double-blind, randomized treatment trials. One group received the antidepressant fluoxetine or placebo. The other received the antidepressant venlafaxine or placebo. (A placebo is an inactive substance, such as a sugar pill.) Each subject received a quantitative EEG prior to treatment, 48 hours after treatment and one week after treatment.

Thirteen of 25 subjects responded to medication, or 52 percent. Ten of 26 subjects responded to placebo, or 38 percent. Subjects who responded to medication uniquely showed significant decreases in cordance, a measure of brain-wave activity, at 48 hours and one week. Clinical changes did not begin to emerge until after four weeks. Subjects with the greatest changes in cordance had the most complete response to the medication after eight weeks. "Other researchers have compared brain scans of depressed people before and after treatment and found differences between those who recovered and those who did not respond. Those findings, however, do not allow prediction of whether a particular patient is likely to get well," said Cook, who also is an assistant professor in the Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine at UCLA. "This is the first study to detect specific changes in brain wave activity that precede the clinical changes in a way that can usefully predict response."

Cook’s group is continuing this work to determine whether this same pattern holds for other antidepressant medications. They are also working to simplify the EEG method to make it easier for doctors to use this approach in patient care.

EEG measurements are performed by placing recording electrodes on the scalp. The electrodes connect to the body through conductive paste or gel, which is easily rinsed from a person’s hair after the test is complete. It does not hurt and involves no radioactivity. The electrodes are connected to a computer, which measures the signals coming from the brain and processes them into colorful patterns.



The study was conducted with funding from the National Alliance for Research in Schizophrenia and Depression, the National Institute of Mental Health, Eli Lilly Co. Inc. and Wyeth-Ayerst Laboratories Inc.

Other UCLA investigators involved in the study include Dr. Andrew F. Leuchter, Melinda Morgan, Elise Witte, Dr. William F. Stubbeman, Michelle Abrams, Susan Rosenberg and Sebastian H.J. Uijtdehaage, all from the UCLA Neuropsychiatric Institute’s Quantitative EEG laboratory.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services, and shape national health policy regarding neuropsychiatric disorders.

Neuropsychopharmacology is published by the American College of Neuropsychopharmacology.

Dan Page | EurekAlert
Further information:
http://www.npi.ucla.edu/
http://www.qeeg.npi.ucla.edu
http://www.depression.ucla.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>