Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers check brain waves to predict effectiveness of antidepressants

11.06.2002


A new UCLA Neuropsychiatric Institute study shows for the first time that measurable changes in the front of the brain can predict the effectiveness of an antidepressant within days of treatment — weeks before a patient begins to feel better.



Using quantitative EEG, a non-invasive computerized measurement of brain wave patterns, the researchers discovered that specific changes in brain-wave activity precede clinical changes brought on by medication. The new findings, published in the July edition of the peer-reviewed journal Neuropsychopharmacology, could lead to treatment programs that help depression patients feel better faster by cutting evaluation periods from weeks to days. The findings also could aid in the development of new medications.

"Up to 40 percent of depressed patients do not respond to the first medication they try. Since it takes several weeks for an effective treatment to produce clear improvement, doctors often wait six to 12 weeks to decide that a particular medication just isn’t right for that patient and move on to another treatment," said Dr. Ian A. Cook, a researcher at the institute’s Quantitative EEG Laboratory and lead author of the study.


"By comparing EEG measurements before treatment with those soon after treatment begins, doctors may be able to evaluate the usefulness of an antidepressant within days rather than having to wait weeks to months," Cook said. "This technique also could slash the time and costs needed to develop and research new antidepressants."

The study examined 51 adult patients diagnosed with acute depression. Each participated in one of two, double-blind, randomized treatment trials. One group received the antidepressant fluoxetine or placebo. The other received the antidepressant venlafaxine or placebo. (A placebo is an inactive substance, such as a sugar pill.) Each subject received a quantitative EEG prior to treatment, 48 hours after treatment and one week after treatment.

Thirteen of 25 subjects responded to medication, or 52 percent. Ten of 26 subjects responded to placebo, or 38 percent. Subjects who responded to medication uniquely showed significant decreases in cordance, a measure of brain-wave activity, at 48 hours and one week. Clinical changes did not begin to emerge until after four weeks. Subjects with the greatest changes in cordance had the most complete response to the medication after eight weeks. "Other researchers have compared brain scans of depressed people before and after treatment and found differences between those who recovered and those who did not respond. Those findings, however, do not allow prediction of whether a particular patient is likely to get well," said Cook, who also is an assistant professor in the Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine at UCLA. "This is the first study to detect specific changes in brain wave activity that precede the clinical changes in a way that can usefully predict response."

Cook’s group is continuing this work to determine whether this same pattern holds for other antidepressant medications. They are also working to simplify the EEG method to make it easier for doctors to use this approach in patient care.

EEG measurements are performed by placing recording electrodes on the scalp. The electrodes connect to the body through conductive paste or gel, which is easily rinsed from a person’s hair after the test is complete. It does not hurt and involves no radioactivity. The electrodes are connected to a computer, which measures the signals coming from the brain and processes them into colorful patterns.



The study was conducted with funding from the National Alliance for Research in Schizophrenia and Depression, the National Institute of Mental Health, Eli Lilly Co. Inc. and Wyeth-Ayerst Laboratories Inc.

Other UCLA investigators involved in the study include Dr. Andrew F. Leuchter, Melinda Morgan, Elise Witte, Dr. William F. Stubbeman, Michelle Abrams, Susan Rosenberg and Sebastian H.J. Uijtdehaage, all from the UCLA Neuropsychiatric Institute’s Quantitative EEG laboratory.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services, and shape national health policy regarding neuropsychiatric disorders.

Neuropsychopharmacology is published by the American College of Neuropsychopharmacology.

Dan Page | EurekAlert
Further information:
http://www.npi.ucla.edu/
http://www.qeeg.npi.ucla.edu
http://www.depression.ucla.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>