Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers check brain waves to predict effectiveness of antidepressants

11.06.2002


A new UCLA Neuropsychiatric Institute study shows for the first time that measurable changes in the front of the brain can predict the effectiveness of an antidepressant within days of treatment — weeks before a patient begins to feel better.



Using quantitative EEG, a non-invasive computerized measurement of brain wave patterns, the researchers discovered that specific changes in brain-wave activity precede clinical changes brought on by medication. The new findings, published in the July edition of the peer-reviewed journal Neuropsychopharmacology, could lead to treatment programs that help depression patients feel better faster by cutting evaluation periods from weeks to days. The findings also could aid in the development of new medications.

"Up to 40 percent of depressed patients do not respond to the first medication they try. Since it takes several weeks for an effective treatment to produce clear improvement, doctors often wait six to 12 weeks to decide that a particular medication just isn’t right for that patient and move on to another treatment," said Dr. Ian A. Cook, a researcher at the institute’s Quantitative EEG Laboratory and lead author of the study.


"By comparing EEG measurements before treatment with those soon after treatment begins, doctors may be able to evaluate the usefulness of an antidepressant within days rather than having to wait weeks to months," Cook said. "This technique also could slash the time and costs needed to develop and research new antidepressants."

The study examined 51 adult patients diagnosed with acute depression. Each participated in one of two, double-blind, randomized treatment trials. One group received the antidepressant fluoxetine or placebo. The other received the antidepressant venlafaxine or placebo. (A placebo is an inactive substance, such as a sugar pill.) Each subject received a quantitative EEG prior to treatment, 48 hours after treatment and one week after treatment.

Thirteen of 25 subjects responded to medication, or 52 percent. Ten of 26 subjects responded to placebo, or 38 percent. Subjects who responded to medication uniquely showed significant decreases in cordance, a measure of brain-wave activity, at 48 hours and one week. Clinical changes did not begin to emerge until after four weeks. Subjects with the greatest changes in cordance had the most complete response to the medication after eight weeks. "Other researchers have compared brain scans of depressed people before and after treatment and found differences between those who recovered and those who did not respond. Those findings, however, do not allow prediction of whether a particular patient is likely to get well," said Cook, who also is an assistant professor in the Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine at UCLA. "This is the first study to detect specific changes in brain wave activity that precede the clinical changes in a way that can usefully predict response."

Cook’s group is continuing this work to determine whether this same pattern holds for other antidepressant medications. They are also working to simplify the EEG method to make it easier for doctors to use this approach in patient care.

EEG measurements are performed by placing recording electrodes on the scalp. The electrodes connect to the body through conductive paste or gel, which is easily rinsed from a person’s hair after the test is complete. It does not hurt and involves no radioactivity. The electrodes are connected to a computer, which measures the signals coming from the brain and processes them into colorful patterns.



The study was conducted with funding from the National Alliance for Research in Schizophrenia and Depression, the National Institute of Mental Health, Eli Lilly Co. Inc. and Wyeth-Ayerst Laboratories Inc.

Other UCLA investigators involved in the study include Dr. Andrew F. Leuchter, Melinda Morgan, Elise Witte, Dr. William F. Stubbeman, Michelle Abrams, Susan Rosenberg and Sebastian H.J. Uijtdehaage, all from the UCLA Neuropsychiatric Institute’s Quantitative EEG laboratory.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services, and shape national health policy regarding neuropsychiatric disorders.

Neuropsychopharmacology is published by the American College of Neuropsychopharmacology.

Dan Page | EurekAlert
Further information:
http://www.npi.ucla.edu/
http://www.qeeg.npi.ucla.edu
http://www.depression.ucla.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>