Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Might fish provide Lowe-down on boyhood disease?

08.02.2008
Scientists have been awarded £72,000 to study zebrafish in a bid to understand the causes of an incurable genetic disorder in humans.

The University of Manchester team will use the model organism to investigate Lowe syndrome, an inherited complaint affecting only boys.

“Lowe syndrome is a rare disorder that produces cataracts of the eyes, defects in brain development and kidney problems in young male sufferers,” said Dr Martin Lowe, who will head the research.

“Life expectancy is short due to complications associated with the disease, which can cause blindness, arthritis, rickets, mental impairment, development delay, tooth and bone decay and kidney failure.”

The research – funded by the Lowe Syndrome Trust – will focus on one particular gene, OCRL1, which scientists have identified as being a key factor in the cause of the condition.

“Lowe syndrome arises from a mutation in OCRL1, which is a gene found on the male X-chromosome involved in degrading fat-soluble molecules in the body called lipids,” said Dr Lowe, who is based in the Faculty of Life Sciences.

“Although significant progress has been made to increase our understanding of OCRL1, we still do not know what processes it regulates. Furthermore, we have not been able to deduce how loss of OCRL1 brings about the physical changes associated with Lowe syndrome.”

One of the difficulties earlier studies have faced is finding a suitable model system to explore the mechanisms underlying the disease. But in a pilot study, Dr Lowe and his team found that OCRL1 works in a similar manner in zebrafish as it does in humans.

He said: “Zebrafish offer a number of advantages over other model systems and we plan to extend our earlier analysis to further scrutinise the role of OCRL1 in development, focusing initially on the brain but also examining the other tissues affected in Lowe syndrome.

“In the long term it is hoped that zebrafish will serve as a model system for experimenting with chemicals that suppress the symptoms of Lowe syndrome in the hope of one day finding a cure.”

The research is being funded by the Lowe Syndrome Trust, which was set up in June 2000 by Lorraine Thomas after her son, Oscar, now aged 14, was diagnosed with the condition in 1999.

No government support or UK research of the syndrome was available at that time and, for the last seven years, Lorraine has devoted her life to raising money for the charity.

Lorraine said: "The Lowe Syndrome Trust is delighted to award a grant to The University of Manchester to further research into this rare disease. Sadly, due to lack of awareness and funding, many children suffering from this disorder only live until their teenage years.

"The objective of the Trust is to fund medical research that will eventually lead to the development of drugs to better regulate the metabolic imbalance of the disease and eventually find a cure."

Since starting the charity Lorraine has persuaded many celebrities to back her cause, including television presenter Jonathan Ross.

Jonathan said: "As a trustee I am delighted that we are able to fund the Manchester project. We hope that this research will entice more interest into the disease from research scientists worldwide."

Aeron Haworth | alfa
Further information:
http://www.lowetrust.com
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>