Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Might fish provide Lowe-down on boyhood disease?

08.02.2008
Scientists have been awarded £72,000 to study zebrafish in a bid to understand the causes of an incurable genetic disorder in humans.

The University of Manchester team will use the model organism to investigate Lowe syndrome, an inherited complaint affecting only boys.

“Lowe syndrome is a rare disorder that produces cataracts of the eyes, defects in brain development and kidney problems in young male sufferers,” said Dr Martin Lowe, who will head the research.

“Life expectancy is short due to complications associated with the disease, which can cause blindness, arthritis, rickets, mental impairment, development delay, tooth and bone decay and kidney failure.”

The research – funded by the Lowe Syndrome Trust – will focus on one particular gene, OCRL1, which scientists have identified as being a key factor in the cause of the condition.

“Lowe syndrome arises from a mutation in OCRL1, which is a gene found on the male X-chromosome involved in degrading fat-soluble molecules in the body called lipids,” said Dr Lowe, who is based in the Faculty of Life Sciences.

“Although significant progress has been made to increase our understanding of OCRL1, we still do not know what processes it regulates. Furthermore, we have not been able to deduce how loss of OCRL1 brings about the physical changes associated with Lowe syndrome.”

One of the difficulties earlier studies have faced is finding a suitable model system to explore the mechanisms underlying the disease. But in a pilot study, Dr Lowe and his team found that OCRL1 works in a similar manner in zebrafish as it does in humans.

He said: “Zebrafish offer a number of advantages over other model systems and we plan to extend our earlier analysis to further scrutinise the role of OCRL1 in development, focusing initially on the brain but also examining the other tissues affected in Lowe syndrome.

“In the long term it is hoped that zebrafish will serve as a model system for experimenting with chemicals that suppress the symptoms of Lowe syndrome in the hope of one day finding a cure.”

The research is being funded by the Lowe Syndrome Trust, which was set up in June 2000 by Lorraine Thomas after her son, Oscar, now aged 14, was diagnosed with the condition in 1999.

No government support or UK research of the syndrome was available at that time and, for the last seven years, Lorraine has devoted her life to raising money for the charity.

Lorraine said: "The Lowe Syndrome Trust is delighted to award a grant to The University of Manchester to further research into this rare disease. Sadly, due to lack of awareness and funding, many children suffering from this disorder only live until their teenage years.

"The objective of the Trust is to fund medical research that will eventually lead to the development of drugs to better regulate the metabolic imbalance of the disease and eventually find a cure."

Since starting the charity Lorraine has persuaded many celebrities to back her cause, including television presenter Jonathan Ross.

Jonathan said: "As a trustee I am delighted that we are able to fund the Manchester project. We hope that this research will entice more interest into the disease from research scientists worldwide."

Aeron Haworth | alfa
Further information:
http://www.lowetrust.com
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>