Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers train the immune system to deliver virus that destroys cancer in lab models

20.12.2007
Procedure also could prevent recurrence

An international team of researchers led by Mayo Clinic have designed a technique that uses the body’s own cells and a virus to destroy cancer cells that spread from primary tumors to other parts of the body through the lymphatic system. In addition, their study shows that this technology could be the basis for a new cancer vaccine to prevent cancer recurrence.

The study appeared in the Dec. 9 online issue of Nature Medicine.

The technology combines infection-fighting T-cells with the vesicular stomatitis virus that targets and destroys cancer cells while leaving normal cells unharmed. The study, which has not yet been replicated in humans, is significant because it describes a potential new therapy to treat and prevent the spread of cancer in patients.

“We hope to translate these results into clinical trials. However, until those trials are done, it’s difficult to be certain that what we see in mouse models will clearly translate to humans. We’re hopeful that will be the case,” says Richard Vile, Ph.D., a Mayo Clinic specialist in molecular medicine and immunology and the study’s principal investigator.

In primary cancers of the breast, colon, prostate, head and neck and skin, the growth of secondary tumors often pose the most threat to patients, not the primary tumor. The prognosis for these patients often depends upon the degree of lymph node involvement and whether the cancer has spread.

Dr. Vile and colleagues theorized that they could control the spread of cancer through the lymphatic system (bone marrow, spleen, thymus and lymph nodes) by manipulating the immune system.

Researchers zeroed in on immature T-cells from bone marrow, programming them to respond to specific threats to the immune system while delivering a cancer-destroying virus to the tumor cells.

To deliver the virus, researchers removed T-cells from a healthy mouse, loaded them with the virus and injected the T-cells back into the mouse. Researchers found that once the T-cells returned to the lymph nodes and spleen, the virus detached itself from the T-cells, found the tumor cells, selectively replicated within them and extracted tumor cells from those areas.

CANCER VACCINE

The procedure used in this study triggered an immune response to cancer cells, which means that it could be used as a cancer vaccine to prevent recurrence.

“We show that if you kill tumor cells directly in the tumor itself, you can get a weak immunity against the tumor, but if you use this virus to kill tumor cells in the lymph nodes, you get a higher immunity against the tumor,” Dr. Vile says.

RESULTS

The technique used in this study successfully treated the cells of three different diseases: melanoma, lung cancer and colorectal cancer. The results include:

Two days after treatment, the presence of melanoma tumor cells in lymph nodes was significantly less, but not completely gone. There were no cancer cells in the spleen.

Ten-to-14 days after a T-cell transfer, both the lymph nodes and spleen were free of melanoma tumor cells.

Mice treated with a single dose of the T-cells transfer developed a potent T-cell response against melanoma tumor cells.

Although the procedure was not intended to treat the primary melanoma tumor, significant reductions in tumor cells were observed.

In mice with lung cancer metastasis, cancer cells were significantly reduced in one-third of mice and completely eradicated in two-thirds of mice. Efforts to clear metastases from colorectal tumors were similarly effective.

Lung and colorectal tumor cells were purged from lymph nodes. Also, the spleens of mice that had lung cancer developed immunity to the cancer after the treatment.

The technology already exists to extract T-cells from patients, attach the virus and inject the cells back into the patients. Doctors currently use a similar process to attach radioactive tracers to T-cells when trying to find the source of an infection in patients.

“This is technology that is relatively easy to translate to humans because it involves taking T-cells from the patient -- something routinely done today -- loading them with this virus and then putting those T-cells back into patients whose cancer has spread to lymph nodes, are at high risk of the cancer spreading to other parts of the body or are at high risk of succumbing to the cancer,” Dr. Vile says.

Amy Reyes | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>