Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reactive Oxygen’s Role in Metastasis

17.09.2009
Researchers at the Burnham Institute for Medical Research (Burnham) have discovered that reactive oxygen species, such as superoxide and hydrogen peroxide, play a key role in forming invadopodia, cellular protrusions implicated in cancer cell migration and tumor metastasis.

Sara Courtneidge, Ph.D., professor and director of the Tumor Microenvironment Program at Burnham’s NCI-designated Cancer Center, and colleagues have found that inhibiting reactive oxygen reduces invadopodia formation and limits cancer cell invasion. The study was published on September 15 in the journal Science Signaling.

In a companion paper, published in the same issue of Science Signaling, Gary Bokoch, Ph.D., of The Scripps Research Institute, in collaboration with Dr. Courtneidge, found that the proteins Tks4 and Tks5, commonly expressed in cancer cells, are functionally related to p47phox, a protein found in phagocytes that is part of a complex that is instrumental in producing reactive oxygen to mount an immune response.

“Reactive oxygen has a complex cellular role,” said Dr. Courtneidge. “Normal cells use reactive oxygen to signal, grow and move. Immune cells, such as neutrophils, produce reactive oxygen to destroy bacteria. Now we find that reactive oxygen is necessary for invadopodia formation, which allows cancer cells to become metastatic.”

Invadopodia facilitate cancer cell migration by breaking down the extracellular matrix that normally keeps cells in place. In previous research, Dr. Courtneidge discovered that Tks5 is crucial for invadopodia formation. The structural similarities between Tks5 and p47phox, which is part of the NADPH oxidase (Nox) system, led Dr. Courtneidge to consider the role reactive oxygen plays in invadopodia formation.

Using invadopodia-rich mouse fibrosarcoma cells, the Courtneidge laboratory tested a number of antioxidants and found both a marked reduction in invadopodia formation and invasive behavior. In addition, the team inhibited expression of Nox family enzymes with siRNA and had similar results, demonstrating that NADPH oxidases are involved in invadopodia formation. The scientists repeated these experiments with human melanoma, head and neck and breast cancer cell lines and also saw a marked reduction in invadopodia formation.

With the discovery of reactive oxygen’s role in invadopodia formation, researchers have additional possibilities for drug intervention. Future research and drug development may focus on inhibiting NADPH oxidase activity and limiting invadopodia formation to prevent cancer cell migration.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>