Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick blood test for malaria

01.08.2014

Siemens is working on a procedure that would allow blood to be routinely tested for malaria.

Physicians normally diagnose the tropical disease by using a microscope to search for parasites in blood samples. The problem is that practically every instance of fever in countries where the disease is common is treated with antimalarial drugs, despite the fact that doctors don't even know if the patient is afflicted with malaria.


Conversely, doctors in countries where malaria is rare often don't associate their patients' symptoms with the tropical fever and therefore don't make the correct diagnosis. As reported in the Siemens research ma­gazine Pictures of the Future, scientists from Siemens' research department Corporate Technology (CT) have now developed a method that can detect malaria using information from a standard blood test. The scientists' goal is to implement the new procedure in Siemens' ADVIA 2010 hematology system, which is now being used in many hospitals around the world.

Malaria is one of the world's most devastating tropical diseases. According to the World Health Organization, some 200 million people became afflicted in 2012, and more than 600,000 people died. It's difficult to make a proper diagnosis because the symptoms can have many different causes. Medical lab technicians also need to have a lot of experience to identify malaria parasites under a microscope.

Experts say that only around ten percent of actual cases worldwide are diagnosed as such. Being able to detect the disease through a blood test would improve the situation. The problem up until now was that although malaria does change certain blood attributes, such as the number of platelets, the same is also true of other illnesses.

The idea was to identify a malaria affliction on the basis of a distinct combination of several different blood attributes. Together with colleagues from Siemens Healthcare, CT researchers analyzed anonymous blood data from samples taken from both healthy individuals and malaria patients.

They initially selected parameters that might potentially be related to malaria from the hundreds of measurement values produced by the ADVIA system. They then used statistical methods to search for distinct blood value patterns in the samples taken from malaria patients. In this manner, they developed a formula for searching for these "malaria patterns" in blood sample data.

Their technique can also be adapted to different situations. For example, sometimes it's important to be able to detect malaria even if the number of parasites present in blood is very low - i.e. the triggers must be very sensitive. In other situations, doctors want to be very certain they're making the right diagnosis in order to avoid false alarms. The new formula for malaria diagnosis performs very well with respect to both sensitivity and specificity.

The formula is based on the blood values associated with the most common form of malaria. The researchers are further developing their method in order to be able to distinguish between the seven different types of malaria and to test how well their method diagnoses each of them. They are also analyzing additional blood data sets from different regions around the world with the goal of making their procedure even more robust. 

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: ADVIA CT Technology blood common diagnosis fever identify malaria parasites symptoms tropical

More articles from Health and Medicine:

nachricht Mobile phone test can reveal vision problems in time
11.02.2016 | University of Gothenburg

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>