Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quick blood test for malaria


Siemens is working on a procedure that would allow blood to be routinely tested for malaria.

Physicians normally diagnose the tropical disease by using a microscope to search for parasites in blood samples. The problem is that practically every instance of fever in countries where the disease is common is treated with antimalarial drugs, despite the fact that doctors don't even know if the patient is afflicted with malaria.

Conversely, doctors in countries where malaria is rare often don't associate their patients' symptoms with the tropical fever and therefore don't make the correct diagnosis. As reported in the Siemens research ma­gazine Pictures of the Future, scientists from Siemens' research department Corporate Technology (CT) have now developed a method that can detect malaria using information from a standard blood test. The scientists' goal is to implement the new procedure in Siemens' ADVIA 2010 hematology system, which is now being used in many hospitals around the world.

Malaria is one of the world's most devastating tropical diseases. According to the World Health Organization, some 200 million people became afflicted in 2012, and more than 600,000 people died. It's difficult to make a proper diagnosis because the symptoms can have many different causes. Medical lab technicians also need to have a lot of experience to identify malaria parasites under a microscope.

Experts say that only around ten percent of actual cases worldwide are diagnosed as such. Being able to detect the disease through a blood test would improve the situation. The problem up until now was that although malaria does change certain blood attributes, such as the number of platelets, the same is also true of other illnesses.

The idea was to identify a malaria affliction on the basis of a distinct combination of several different blood attributes. Together with colleagues from Siemens Healthcare, CT researchers analyzed anonymous blood data from samples taken from both healthy individuals and malaria patients.

They initially selected parameters that might potentially be related to malaria from the hundreds of measurement values produced by the ADVIA system. They then used statistical methods to search for distinct blood value patterns in the samples taken from malaria patients. In this manner, they developed a formula for searching for these "malaria patterns" in blood sample data.

Their technique can also be adapted to different situations. For example, sometimes it's important to be able to detect malaria even if the number of parasites present in blood is very low - i.e. the triggers must be very sensitive. In other situations, doctors want to be very certain they're making the right diagnosis in order to avoid false alarms. The new formula for malaria diagnosis performs very well with respect to both sensitivity and specificity.

The formula is based on the blood values associated with the most common form of malaria. The researchers are further developing their method in order to be able to distinguish between the seven different types of malaria and to test how well their method diagnoses each of them. They are also analyzing additional blood data sets from different regions around the world with the goal of making their procedure even more robust. 

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: ADVIA CT Technology blood common diagnosis fever identify malaria parasites symptoms tropical

More articles from Health and Medicine:

nachricht University of California Scientists Create Malaria-Blocking Mosquitoes
30.11.2015 | University of California, Irvine

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>