Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plaques detected in brain scans forecast cognitive impairment

11.03.2014

Brain imaging using radioactive dye can detect early evidence of Alzheimer's disease that may predict future cognitive decline among adults with mild or no cognitive impairment, according to a 36-month follow-up study led by Duke Medicine.

The national, multicenter study confirms earlier findings suggesting that identifying silent beta-amyloid plaque build-up in the brain could help guide care and treatment decisions for patients at risk for Alzheimer's. The findings appeared online March 11, 2014, in Molecular Psychiatry, a Nature Publishing Group journal.

"Our research found that healthy adults and those with mild memory loss who have a positive scan for these plaques have a much faster rate of decline on memory, language and reasoning over three years," said lead author P. Murali Doraiswamy, M.D., professor of psychiatry and director of the neurocognitive disorders program at Duke.

Alzheimer's disease – which currently has no cure – afflicts an estimated five million U.S. adults, and is the sixth-leading cause of death among adults, according to the Centers for Disease Control and Prevention. Prior studies have found that changes in the brain begin years, and possibly decades, before cognitive symptoms emerge.

... more about:
»Alzheimer's »PET »Plaques »cognitive »scans

A biomarker that could accurately identify those at greatest risk for cognitive decline could help clinicians better evaluate and treat patients, while also accelerating the testing of drugs to treat the disease.

The current study, which enrolled 152 adults ages 50 and older, was designed to assess whether silent pathological changes in the brain associated with Alzheimer's and detected with positron emission tomography (PET) can predict cognitive decline. Of the participants, 69 had normal cognitive function at the start of the study, 52 had been recently diagnosed with mild cognitive impairment, and 31 were diagnosed with Alzheimer's disease.

Subjects completed cognitive tests and underwent PET scans of their brains. This type of imaging uses a radioactive tracer to look for chemical signs of disease in specific tissues.

The radioactive dye used, florbetapir (Amyvid), was approved by the U.S. Food and Drug Administration in 2012 for PET imaging of the brain to estimate beta-amyloid plaque density in patients being evaluated for cognitive impairment. It binds to the beta-amyloid plaques that characterize Alzheimer's disease, helping to measure the extent to which plaques have formed in different brain regions. Using this information, the researchers rated the PET scans as positive or negative.

After 36 months, the researchers repeated the same cognitive exams to reassess participants. They found that those with mild or no cognitive impairment who had evidence of plaques at the trial's start worsened to a greater degree on cognitive tests than those with negative scans.

Thirty-five percent of plaque-positive participants who started with mild cognitive impairment progressed to Alzheimer's, compared to 10 percent without plaque. In addition, plaque-positive participants with mild impairment were more than twice as likely to be started on cognitive-enhancing medication than those without plaque.

Conversely, those with negative scans experienced much less decline: 90 percent of participants with mild cognitive impairment but no plaque did not progress to Alzheimer's. This finding supports the negative predictive value of using PET imaging to identify patients unlikely to decline, which has important implications for both clinical research and treatment.

"Having a negative scan could reassure people that they are not likely to be at risk for progression in the near future," Doraiswamy said.

Doraiswamy cautioned that florbetapir is currently not approved to predict the development of dementia and is not used as a screening tool in cognitively normal people. Future longitudinal studies are needed to further clarify the prognostic role of beta-amyloid plaque PET imaging in a clinical setting.

"Even though our study suggests the test has predictive value in normal adults, we still need additional evidence," Doraiswamy said. "We need longer-term studies to look at the consequences of silent brain plaque build-up, given that it affects 15 to 30 percent of normal older people."

Doraiswamy added that the findings provide support for planned and ongoing multicenter clinical trials of asymptomatic older adults with plaque-positive scans. The research also has implications for other conditions where amyloid might play a role, such as traumatic brain injury (from sports or combat).

###

In addition to Doraiswamy, study authors include Terence Z. Wong of Duke (currently at the University of North Carolina at Chapel Hill); Reisa A. Sperling and Keith Johnson of Massachusetts General Hospital, Harvard Medical School; Eric M. Reiman of Banner Alzheimer's Institute; Marwan N. Sabbagh of Banner-Sun Health Research Institute; Carl H. Sadowsky of Nova SE University; Michael Grundman of Global R&D Partners and the University of California, San Diego; Adam S. Fleisher of Banner Alzheimer's Institute and the University of California, San Diego; and Alan Carpenter, Abhinay D. Joshi, Ming Lu, Mark A. Mintun, Daniel M. Skovronsky and Michael J. Pontecorvo of Avid Radiopharmaceuticals.

The study was funded by Eli Lilly/Avid Radiopharmaceuticals, which markets florbetapir, and was conducted by Avid and the AV45-A11 study group, a consortium of Alzheimer's clinical research centers. Doraiswamy receives advisory and speaker fees from Lilly/Avid, as well as other companies. A full list of author disclosures can be found in the manuscript.

Rachel Harrison | EurekAlert!
Further information:
http://www.dukemednews.org/

Further reports about: Alzheimer's PET Plaques cognitive scans

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>