Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodic heart rate decelerations in premature infants

23.04.2010
A normal healthy heart beats at a variable rate with extraordinarily complex fluctuations across a wide range of time scales. Reduced complexity of heart rate has both clinical and dynamical significance – it may provide warning of impending illness, or clues about the dynamics of the heart's pacemaking system.

In work published in the April issue of Experimental Biology and Medicine, simple and interesting heart rate dynamics in premature human infants is reported – reversible transitions to large-amplitude periodic oscillations – and the appearance and disappearance of these periodic oscillations is described by a simple mathematical model, called a Hopf bifurcation.

The work was carried out by Abigail Flower, as part of her PhD thesis in biophysics, working together with Randall Moorman and Douglas Lake at the University of Virginia, and John Delos, at the College of William and Mary.

Dr. Moorman explained the background of this research. "Two periodic cycles of heart rate have been known for over a century. One is respiratory sinus arrhythmia, the coupling of heart rate to breathing (our heart rate increases when we inhale and decreases when we exhale). Another cycle of heart rate is correlated with a cycle of blood pressure called Mayer waves. Abby's work is quite different".

Dr. Flower examines a different and previously uncharacterized heart rate cycle involving large decelerations of heart rates of infants in neonatal intensive care units (NICU's). A deceleration is a decrease in heart rate followed by a return to the base rate. She devised a heart rate deceleration detector using a pattern-matching algorithm inspired by wavelet theory, and applied it to a large clinical database. She found that large decelerations are common, and similar in shape among infants; they are usually isolated, but they sometimes appear in clusters. In rare cases a deceleration appears every fifteen seconds for epochs as long as two days. These long periodic sequences of decelerations occur spontaneously – they were not induced by controlled means – so they must be a normal or pathological mode of regular dynamics in the human cardiac pacemaking system near the time of birth.

This phenomenon is interesting from both clinical and dynamical perspectives. Periodic decelerations are dynamically interesting because they show that the control system of the heart rate can go into a previously uncharacterized oscillatory mode. Presently there is no physiological explanation for this phenomenon. Dr. Flower developed a mathematical theory, based upon Hopf bifurcation theory, which describes the abrupt beginnings and endings of clusters of periodic decelerations. A Hopf bifurcation is the most general theory describing how a system can change from stable to oscillatory. Such bifurcations occur for example in laser systems, oscillatory chemical reactions, predator-prey dynamics, and in the Hodgkin-Huxley model of the firing of nerve cells.

Dr. Moorman said "These observations and computations therefore provide a new point of contact with mathematical models of the heart rate control system. The group is presently investigating models of the control loops connecting heart rate with respiration and blood pressure to see whether the available models show such behavior."

Heart rate decelerations, whether periodic or not, are clinically interesting because clusters of decelerations in neonates are statistically correlated with impending sepsis, a severe bacterial infection of the bloodstream. Clusters of decelerations may begin to appear as many as 24 hours before any clinical signs of illness, so deceleration detection can provide early warning of bacterial infection in this vulnerable population.

"One of the pleasures of this kind of work is its interdisciplinary nature" said Dr. Delos. "As an undergraduate, Abby did a senior project with me in physics, studying the hydrogen atom. Then a few years ago she emailed me and asked if I would like to participate in this project, working with her and Randall, a cardiologist, and Doug, a statistician. Since then I've been like a kid in a candy store, absorbing all the knowledge I could, and working intensely – maybe I should say playing intensely – trying to make sense of the data. People have been using electronic methods to monitor the heart for over a century. Now Abby has developed new, continuous, noninvasive, purely electronic methods to monitor infants for infectious disease. It is a delightful result."

Related methods of clinical monitoring, using noninvasive electronic observations and advanced mathematical tools to monitor for infectious disease, are now in use in more than 1000 NICU beds, and a large randomized clinical trial is underway to test the effect on infants' outcomes.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "In this outstanding interdisciplinary study Dr. Flowers has reported interesting heart rate dynamics in premature human infants. This research team from the University of Virginia and the College of William and Mary has elegantly described reversible transitions to large-amplitude periodic oscillations by a mathematical model based upon Hopf bifurcation theory."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. John B. Delos | EurekAlert!
Further information:
http://www.ebmonline.org
http://www.sebm.org

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>