Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study demonstrates genes' major role in skin and organ development

16.09.2015

Disruptions of splicing proteins cause facial, skin, organ defects in young mice

Knocking out one or both crucial regulatory genes caused cleft lip, skin barrier defects, and a host of other developmental problems in mice, according to new research from the Perelman School of Medicine at the University of Pennsylvania, hinting that abnormalities in these molecular pathways could underlie many birth defects that are presently not well understood. The two closely related regulatory genes are active in the normal development of mammals and govern how RNAs produced from the genes are joined to make final versions of the encoded protein, a process called alternative splicing.


Immunofluorescence of skin differentiation markers for basal keratinocytes.

Credit: Russ Carstens, M.D., Perelman School of Medicine, University of Pennsylvania; eLife

The study, published this week in eLife, concerns the genes Esrp1 and Esrp2, which have become the focus of much research in recent years, due to their evident roles in development and cancer.

"Clearly there are many important roles for these genes in facial, skin and, organ development, and we're only just starting to catalogue them," said Russ P. Carstens, MD, an associate professor of Medicine (Renal-Electrolyte and Hypertension Division) and Genetics.

Carstens and his colleagues were the first to identify Esrp1 and Esrp2, in 2009, as molecular switches for alternative splicing, in which the initial RNA transcript of a gene's DNA code is cut up and put back together in different arrangements. Alternative splicing affects most mammalian genes, and effectively enables the production of distinct protein variants (called isoforms) from the same gene.

Which protein isoforms are produced depends on the cell type and other physiological circumstances. Esrp1 and Esrp2 are active specifically in epithelial cells, which form the skin, the inner layers of the gut and lung, and other tissues in the body. In those cells the Esrp1 and Esrp2 proteins enforce epithelial-specific splicing isoforms for hundreds of different genes, as Carstens and his team have shown in studies since 2009.

What's more, the researchers discovered two years ago that the suppression of Esrp activity helps to enable a process called the epithelial-mesenchymal transition (EMT), in which epithelial cells acquire properties allowing them to detach and develop into new tissue. EMT is crucial for normal embryonic development, but also operates in wound healing, and when abnormally switched on, can enable the spread of tumor cells.

These early studies were in laboratory-cultured cells. In the eLife study, Carstens and his colleagues engineered mice without Esrp1, Esrp2, or both. They found that mice lacking Esrp1 alonewere born alive but with cleft palate and cleft lip deformities that prevented feeding. All died within hours.

"This finding really shows that epithelial-specific splicing is important for the normal development of the face and palate--cleft lip and palate are among the most common congenital conditions," Carstens said.

Mice lacking only Esrp2, which is likely to have evolved as a backup duplicated copy to cover some functions of Esrp1, appeared normal, as long as Esrp1 was present.

Mice lacking both genes displayed more pronounced abnormalities. Their embryos had more profound defects than were seen in the Esrp1-null mice, including craniofacial and forelimb defects, and the complete absence of lungs and salivary glands--two organs made up largely of epithelial cells.

In collaboration with Yi Xing from UCLA, the team catalogued and analyzed how gene expression patterns in skin cells differed among the Esrp knockouts and found hundreds of significant changes.

The analysis suggested, among other findings, that the lack of both Esrp1 and Esrp2 leads to serious defects in skin development. Because mice lacking both genes would not be born alive, the scientists followed up this lead by making "conditional knockout mice," in which Esrp1 and Esrp2 activity was normal early in fetal development, but then was switched off in skin epithelial cells.

The resulting mice perished within a day of being born. "They basically became dehydrated and died because their skin couldn't keep water and fluid in," Carstens said. These flaws, called epithelial barrier defects, feature in human disorders, including in the skin, gut, and lung. Carstens hopes that further study of Esrp1 and Esrp2, and in particular the proteins whose splice isoforms they control, will uncover useful clues about how these defects arise and how they might be remedied.

He also hopes that the Esrp1-knockout mice will prove to be a valuable new model for studying cleft lip. "There have been many knockout mouse models of cleft palate, but very few of cleft lip, which is actually the more common defect in humans," Carstens said. The team is now working on other conditional knockout and gene expression studies of Esrp1 and Esrp2's roles in the face, lungs, gut, kidney, and other organs.

###

The lead authors of this work were postdoctoral fellows Thomas W. Bebee, from Penn, who generated and characterized the knockout mice, who along with bioinformatic analysis by Juw Won Park, from UCLA, profiled the global molecular changes in the knockout mice. Other coauthors are Katherine Sheridan, Claude Warzecha, Benjamin Cieply, and Alex Rohacek, all from Penn.

Funding was provided by the National Institutes of Health (R01 GM088809, R56 AR066741, R56 DE024749, P30 AR057217, P30 AR050950, P30 DK050306, T32DK700638, F32DK098917, R01 GM088342, R01 GM105431), and a research fellowship to Yi Xing from the Alfred P. Sloan Foundation.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.9 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $409 million awarded in the 2014 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2014, Penn Medicine provided $771 million to benefit our community.

Karen Kreeger | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>