Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines shifting gears in the circadian clock of the heart

24.10.2012
A new study conducted by a team of scientists led by Giles Duffield, assistant professor of biological sciences and a member of the Eck Institute for Global Health at the University of Notre Dame focuses on the circadian clock of the heart, and used cultured heart tissue.
The results of the new study have implications for cardiovascular health, including daily changes in responses to stress and the effect of long-term rotational shift work.

Previous studies by a research group at the University of Geneva demonstrated a role for glucocorticoids in shifting the biological clock, and characterized this effect in the liver.

The new Notre Dame study, which appears in Oct. 23 edition of journal PLoS ONE, reveals that time-of-day specific treatment with a synthetic glucocorticoid, known as dexamethasone, could shift the circadian rhythms of atria samples, but the time specific effect on the direction of the shifts was different from the liver. For example, when glucocorticoid treatment produces advances of the liver clock, in the atria it produces delays.

"We treated cardiac atrial explants around the clock and produced what is known as a phase response curve, showing the magnitude of the shifting of the clock dependent upon the time of day the treatment is delivered," Duffield said.

Glucocorticoids are steroid hormones produced by the adrenal cortex that then circulate in the blood and regulate aspects of glucose metabolism and immune system function, amongst other things. Glucocorticoid receptors (GRs) that are activated by the hormone, are found in many of our body's cells.

The researchers determined the temporal state of the circadian clock by monitoring the rhythmic expression of clock genes period 1 and period 2 in living tissues derived from transgenic mice.

"Our data highlights the sensitivity of the body's major organs to GR signaling, and in particular the heart," Duffield said. "This could be problematic for users of synthetic glucocorticoids, often used to treat chronic inflammation. Also the differences we observe between important organ systems such as the heart and liver might explain some of the internal disturbance to the synchrony between these tissues that contain their own internal clocks that can occur during shift-work and jet lag. For example, at some point in the time zone transition your brain might be in the time zone of Sydney Australia, your heart in Hawaii and your liver still in Los Angeles. It is important to note that approximately 16% of the US and European work forces undertake some form of shift work.

"Circadian biologists often are thought to be focused on finding a cure to actual 'jet lag', when in fact, certain types of shift work schedules are effectively producing a jet lag response in our body on a weekly basis, and therefore this chronically influences a large part of our population in the modern industrialized world." The other interesting finding was that even removing and replacing the chemically defined tissue growth media (including using the same medium sample), produced shifts of the circadian clock, although these were somewhat smaller shifts than those produced by the synthetic glucocorticoid treatment.

The authors make an interesting proposal: that these "media exchange" shifts are in part caused by mechanical stimulation to the heart tissue produced by simply removing and replacing the very same media. Although the research is in its early phase, the hypothesis does highlight the potential for mechanical stretch of the atria to be a mechanism through which the circadian clock of the heart could be shifted to a new phase of the 24 hour day. There are in fact precedents for this, in that the walls of the cardiac atria already contain stretch receptors that are associated with the control of atrial natriuretic peptide hormone release.

"Least we forget, the heart by nature is mechanical, serving as the pump for the cardiovascular system," Duffield said.

Simple rigorous exercise in the healthy human or stress that can raise heart rate and increase cardiac stroke volume (through activation of the sympathetic nervous system), might produce such a phase shifting effect by acting through such a stretch mechanism. Further, this response is likely to be time of day specific, and the phase response curve to medium treatment that the authors generated in vitro would also predict at what time of the 24 hour day such shifts might occur. The authors are however cautious about the interpretation of their data, as much of this mechanical shift hypothesis has yet to be tested.

It is already know that the heart contains a cell autonomous biological clock and that there are changes across the 24 hour day in cardiac function such as tissue remodeling, what cultured heart muscle cells known as cardiomyocytes metabolize, and differences in responses to physiological demands. The incidence of cardiovascular illness changes over the 24 hour day, with most heart attacks occurring in the morning. Obviously the results of the new study have implications for cardiovascular health, including daily changes in responses to stress and the effect of long-term rotational shift work.

"Put simply, many of our organ systems, specialized in their own way to serve particular functions, are effectively different in their activities and responses across the 24 hour day," said Duffield. "The circadian clock controls these rhythmic processes in each cell and tissue. The components of our body such as the heart, liver and brain, can be divided up as to function differentially not only in a spatial sense but also temporally."

Duffield, the scientific team principle investigator, stressed that the work was a team effort and highlights the important contributions of postdoctoral researcher Daan van der Veen, now a lecturer at the University of Surrey (United Kingdom), and visiting graduate students from Nankai University (P.R. China), Yang Xi and Jinping Shao, who is now a lecturer at Zhengzhou University School of Medicine. The work was funded by grants from the American Heart Association and the National Institute for General Medical Sciences.

Information on the University of Geneva group's research can be found at http://www.sciencemag.org/content/289/5488/2344.abstract.

Giles Duffield | EurekAlert!
Further information:
http://www.nd.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>