Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines shifting gears in the circadian clock of the heart

24.10.2012
A new study conducted by a team of scientists led by Giles Duffield, assistant professor of biological sciences and a member of the Eck Institute for Global Health at the University of Notre Dame focuses on the circadian clock of the heart, and used cultured heart tissue.
The results of the new study have implications for cardiovascular health, including daily changes in responses to stress and the effect of long-term rotational shift work.

Previous studies by a research group at the University of Geneva demonstrated a role for glucocorticoids in shifting the biological clock, and characterized this effect in the liver.

The new Notre Dame study, which appears in Oct. 23 edition of journal PLoS ONE, reveals that time-of-day specific treatment with a synthetic glucocorticoid, known as dexamethasone, could shift the circadian rhythms of atria samples, but the time specific effect on the direction of the shifts was different from the liver. For example, when glucocorticoid treatment produces advances of the liver clock, in the atria it produces delays.

"We treated cardiac atrial explants around the clock and produced what is known as a phase response curve, showing the magnitude of the shifting of the clock dependent upon the time of day the treatment is delivered," Duffield said.

Glucocorticoids are steroid hormones produced by the adrenal cortex that then circulate in the blood and regulate aspects of glucose metabolism and immune system function, amongst other things. Glucocorticoid receptors (GRs) that are activated by the hormone, are found in many of our body's cells.

The researchers determined the temporal state of the circadian clock by monitoring the rhythmic expression of clock genes period 1 and period 2 in living tissues derived from transgenic mice.

"Our data highlights the sensitivity of the body's major organs to GR signaling, and in particular the heart," Duffield said. "This could be problematic for users of synthetic glucocorticoids, often used to treat chronic inflammation. Also the differences we observe between important organ systems such as the heart and liver might explain some of the internal disturbance to the synchrony between these tissues that contain their own internal clocks that can occur during shift-work and jet lag. For example, at some point in the time zone transition your brain might be in the time zone of Sydney Australia, your heart in Hawaii and your liver still in Los Angeles. It is important to note that approximately 16% of the US and European work forces undertake some form of shift work.

"Circadian biologists often are thought to be focused on finding a cure to actual 'jet lag', when in fact, certain types of shift work schedules are effectively producing a jet lag response in our body on a weekly basis, and therefore this chronically influences a large part of our population in the modern industrialized world." The other interesting finding was that even removing and replacing the chemically defined tissue growth media (including using the same medium sample), produced shifts of the circadian clock, although these were somewhat smaller shifts than those produced by the synthetic glucocorticoid treatment.

The authors make an interesting proposal: that these "media exchange" shifts are in part caused by mechanical stimulation to the heart tissue produced by simply removing and replacing the very same media. Although the research is in its early phase, the hypothesis does highlight the potential for mechanical stretch of the atria to be a mechanism through which the circadian clock of the heart could be shifted to a new phase of the 24 hour day. There are in fact precedents for this, in that the walls of the cardiac atria already contain stretch receptors that are associated with the control of atrial natriuretic peptide hormone release.

"Least we forget, the heart by nature is mechanical, serving as the pump for the cardiovascular system," Duffield said.

Simple rigorous exercise in the healthy human or stress that can raise heart rate and increase cardiac stroke volume (through activation of the sympathetic nervous system), might produce such a phase shifting effect by acting through such a stretch mechanism. Further, this response is likely to be time of day specific, and the phase response curve to medium treatment that the authors generated in vitro would also predict at what time of the 24 hour day such shifts might occur. The authors are however cautious about the interpretation of their data, as much of this mechanical shift hypothesis has yet to be tested.

It is already know that the heart contains a cell autonomous biological clock and that there are changes across the 24 hour day in cardiac function such as tissue remodeling, what cultured heart muscle cells known as cardiomyocytes metabolize, and differences in responses to physiological demands. The incidence of cardiovascular illness changes over the 24 hour day, with most heart attacks occurring in the morning. Obviously the results of the new study have implications for cardiovascular health, including daily changes in responses to stress and the effect of long-term rotational shift work.

"Put simply, many of our organ systems, specialized in their own way to serve particular functions, are effectively different in their activities and responses across the 24 hour day," said Duffield. "The circadian clock controls these rhythmic processes in each cell and tissue. The components of our body such as the heart, liver and brain, can be divided up as to function differentially not only in a spatial sense but also temporally."

Duffield, the scientific team principle investigator, stressed that the work was a team effort and highlights the important contributions of postdoctoral researcher Daan van der Veen, now a lecturer at the University of Surrey (United Kingdom), and visiting graduate students from Nankai University (P.R. China), Yang Xi and Jinping Shao, who is now a lecturer at Zhengzhou University School of Medicine. The work was funded by grants from the American Heart Association and the National Institute for General Medical Sciences.

Information on the University of Geneva group's research can be found at http://www.sciencemag.org/content/289/5488/2344.abstract.

Giles Duffield | EurekAlert!
Further information:
http://www.nd.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>