Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Off with Your Glasses

05.03.2014

TAU researchers discover a link between sharp vision and the brain's processing speed

Middle-aged adults who suddenly need reading glasses, patients with traumatic brain injuries, and people with visual disorders such as "lazy eye" may have one thing in common — "visual crowding," an inability to recognize individual items surrounded by multiple objects. Visual crowding makes it impossible to read, as single letters within words are rendered illegible. And basic cognitive functions such as facial recognition can also be significantly hampered. Scientists and clinicians currently attribute crowding to a disorder in peripheral vision.


Now Prof. Uri Polat, Maria Lev, and Dr. Oren Yehezkel of Tel Aviv University's Goldschleger Eye Research Institute at the Sackler Faculty of Medicine have discovered new evidence that correlates crowding in the fovea — a small part of the retina responsible for sharp vision — and the brain's processing speed. These findings, published in Nature's Scientific Reports, could greatly alter earlier models of visual crowding, which emphasized peripheral impairment exclusively. And for many adults lost without their reading glasses, this could improve their vision significantly.

"Current theories strongly stress that visual crowding does not exist in the fovea, that it's a phenomenon that exists only in peripheral visual fields," said Prof. Polat. "But our study points to another part of the eye altogether — the fovea — and contributes to a unified model for how the brain integrates visual information."

... more about:
»Eye »Faculty »Medicine »TV »Visual »cognitive »disorder »disorders »processing

A trained eye

According to Prof. Polat, vision is dynamic and changes rapidly, but it takes time for the brain to process this visual information. Rapidly moving tickers on TV, or traffic signs seen as the driver speeds past, are difficult for anyone to read. However, given enough time, someone with excellent vision can fully recognize the words. Those with slower processing speeds — usually the result of poor perceptive development or age — may not be able to decipher the tickers or the traffic signs. In the study, Prof. Polat employed his expertise in improving vision by retraining the brain and the foveal part of the eye, using exercises in which speed is a key element.

"Training adults to reduce foveal crowding leads to improved vision. A similar training we conducted two years ago allowed adults to eliminate their use of reading glasses altogether, using a technology provided by the GlassesOff company. Other patients who had lost sharp vision for whatever reason were also able to benefit from the same training and improve their processing speed and visual capabilities," said Prof. Polat.

Maria Lev, who performed the study as a part of her doctoral thesis, said one young subject had experienced significant limitations in school for years and had been unable to obtain a driver's license due to severe visual impairment from foveal crowding. After undergoing training that emphasized a foveal rather than a peripheral focus, he was able to overcome the handicap.

"He finally managed to learn to read properly and found his way forward," said Lev. "I'm proud to say that today he is not only eligible for a driver's license, he's also been able to earn his master's degree."

Prof. Polat and his team are currently exploring how visual integration and foveal crowding develop in various clinical cases.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org/site/News2?page=NewsArticle&id=19793

Further reports about: Eye Faculty Medicine TV Visual cognitive disorder disorders processing

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>