Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why obesity surgery helps in diabetes

03.09.2008
To manage obesity, various different surgical procedures can be performed on the stomach, including so-called bypass surgery in which, as well as reducing the size of the stomach, a bypass is created to send food directly into the distal gut (which, before the operation, is far from the stomach).

In obese patients who also suffer from diabetes, spectacular improvement in the diabetes is routinely observed following this type of operation although the mechanism underlying this phenomenon was not understood.

Now, experiments conducted in mice by scientists from Université Claude Bernard – Lyon 1, Inserm, CNRS, INRA and the Hôpital Bichat in Paris, have elucidated the mechanism in question. The bypass stimulates glucose synthesis in the gut, an effect that is sustained between meals. Detection of this glucose induces the sending of a signal to the brain which leads to enhanced responsiveness to insulin. These findings—which are reported in the September issue of the journal Cell Metabolism—could point to novel therapeutic approaches in both obesity and diabetes.

In obese patients, the main objective of gastric surgery is to reduce the size of the stomach and this is most commonly achieved by implanting a gastric ring. When the patient also suffers from diabetes, the latter condition tends to improve once he or she has lost some weight. Bypass surgery however has a specific effect in that dramatic improvement is obtained almost immediately—as of discharge of the patient from hospital—a phenomenon which has been hitherto poorly understood. In this form of surgery, as well as reducing the size of the stomach, a bypass is created to send food directly into the distal intestine (which, before the operation, is far from the stomach). The proximal intestine (which is physiologically located immediately after the stomach) is left in place but it no longer receives any food.

Fabrizio Andréelli and his team (Inserm Unit 695, Hôpital Bichat, Paris) have developed models of "ring" and "bypass" surgery in mice in order to elucidate the specific effects of the two techniques.

It was already known that, in the gut (specifically in the wall of the portal vein*), there is a nerve-based system capable of detecting glucose and sending this information to the brain. In 2005, Gilles Mithieux (Inserm Unit 855, Université Lyon 1, INRA–USC 2028) showed that when de novo glucose synthesis is triggered in the intestine (in a process called neoglucogenesis), this signalling system is activated. The sending of the message results in attenuation of feelings of hunger and also has a beneficial effect on blood glucose regulation.

* the portal vein collects blood coming from the gut
Now, the teams of Fabrizio Andréelli and Gilles Mithieux, in collaboration with those of Christophe Magnan (CNRS UMR 7059, Paris 7) and Bernard Thorens (Lausanne), have tested the hypothesis that intestinal neoglucogenesis is involved in the observed, specific effects of gastric bypass surgery. They fed mice a diet rich in lipids and carbohydrates (sugar) to mimic metabolic conditions in diabetic obesity.

The scientists observed strong expression of genes involved in glucose synthesis throughout the guts of the "bypass" mice but not "ring" mice. They also observed that, between meals, glucose was still being released into the portal vein after the ingested food had been absorbed. Enough glucose was being released to trigger the portal vein signalling system, thereby leading to a reduction in the amount of food eaten and dramatic improvement in the ability of insulin to bring the blood glucose concentration down.

These findings shed light on why gastric bypass surgery induces such rapid improvement in diabetes, a phenomenon which was hitherto unexplained.

According to the authors, "These results could point to new therapeutic strategies—surgery or drugs—relevant not only to obesity but also to diabetes".

Séverine Ciancia | alfa
Further information:
http://www.inserm.fr
http://www.cellmetabolism.org/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>