Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Notre Dame researchers scoring a win-win with novel set of concussion diagnostic tools

From Junior Seau, former San Diego Chargers linebacker, to Dave Duerson, former Chicago Bears safety — who both committed suicide as a result of chronic traumatic encephalopathy (CTE), traumatic brain injuries (TBIs) have been making gruesome headlines at an alarming rate. In the United States alone, TBIs account for an estimated 1.6 - 3.8 million sports injuries every year, with approximately 300,000 of those being diagnosed among young, nonprofessional athletes. But TBIs are not confined to sports; they are also considered a signature wound among soldiers of the Iraq and Afghanistan wars.

The potential impact on the health and well-being of individuals with brain injuries are numerous. These individuals might display a range of symptoms — such as headaches, depression, loss of memory and loss of brain function — which may persist for weeks or months. The effects of brain injuries are most devastating when they remain unrecognized for long periods of time.

This is where Christian Poellabauer, associate professor of computer science and engineering; Patrick Flynn, professor of computer science and engineering; Nikhil Yadav, graduate student of computer science and engineering; and a team of students and faculty are making their own impact.

Although baseline tests of athletes prior to an injury are trending up, these tests must still be compared to examinations after an injury has occurred. They require heavy medical equipment, such as a CT scanner, MRI equipment, or X-ray machine, and are not always conclusive. The Notre Dame team has developed a tablet-based testing system that captures the voice of an individual and analyzes the speech for signs of a potential concussion anytime, anywhere, in real-time.

"This project is a great example of how mobile computing and sensing technologies can transform healthcare," Poellabauer said. "More important, because almost 90 percent of concussions go unrecognized, this technology offers tremendous potential to reduce the impact of concussive and sub-concussive hits to the head."

The system sounds simple enough: an individual speaks into a SmartPhone equipped with the Notre Dame program before and after an event. The two samples are then compared for TBI indicators, which include distorted vowels, hyper nasality and imprecise consonants.

Notre Dame's system offers a variety of advantages over traditional testing, such as portability, high accuracy, low cost and a low probability of manipulation (the results cannot be faked); it has also proven very successful. In testing which occurred during the Notre Dame's Bengal Bouts and Baraka Bouts, annual student boxing tournaments, the researchers established baselines for boxers using tests such as the Axon Sports Computerized Cognitive Assessment Tool (CCAT), the Sport Concussion Assessment Tool 2 (SCAT2), and the Notre Dame iPad-based reading and voice recording test.

During the 2012 Bengal Bouts nine concussions (out of 125 participants) were confirmed by this new speech based test and the University's medical team. Separate tests of 80 female boxers were also conducted during the 2012 Baraka Bouts. Outcomes of the 2013 Bengal Bouts are currently being compared to the findings of the University medical team on approximately 130 male boxers.

The testing was done in cooperation with James Moriarity, the University's chief sports medicine physician, who has developed a series of innovative concussion testing studies.

Christian Poellabauer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>