Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIH scientists unveil mechanisms of immune reconstitution inflammatory syndrome

WHAT: Newly published research by scientists at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, sheds light on a poorly understood, acute illness called Immune Reconstitution Inflammatory Syndrome (IRIS) that develops in some HIV-infected individuals soon after they begin antiretroviral therapy.

IRIS affects certain HIV-infected individuals whose immune systems are heavily damaged by the virus and who have a treated or undiagnosed AIDS-associated infection. When these individuals start antiretroviral therapy and their immune cells begin to regenerate, the immune system unexpectedly produces an exaggerated response that unmasks or worsens the symptoms of the co-infection.

IRIS has become a notable challenge in treating HIV disease, particularly in resource-limited settings. The scientists hope that better understanding how and why the syndrome occurs will lead to targeted prevention or therapy.

To find immunologic patterns that distinguish individuals who develop IRIS from those who do not, the researchers analyzed blood samples from HIV-infected individuals, focusing their analysis on a group of immune cells called T lymphocytes. Most of the studied patients had an AIDS-associated fungal, viral or bacterial infection before they started antiretroviral therapy.

The analysis showed that the individuals who developed IRIS had a higher proportion of activated T cells before starting antiretroviral therapy compared with those who did not develop IRIS. These activated T cells had the propensity to make a key infection-fighting molecule called interferon gamma both before therapy began and during IRIS episodes, suggesting that the cells may participate in the exaggerated immune response seen during IRIS. In addition, the surface markers expressed by the T cells—some with a stimulatory effect and some restraining in nature—suggested they were highly activated as a result of an encounter with the microbes co-infecting the HIV-infected individuals.

A companion study describes a new animal model that can be used to directly analyze the immunologic mechanisms that cause IRIS. This model employs mice infected with Mycobacterium avium, a pathogen frequently seen in HIV-infected individuals who develop IRIS. To mimic the immunologic condition of IRIS-susceptible HIV-infected individuals, the researchers began with mycobacterium-infected mice that had extremely low numbers of T cells. The scientists found that rebuilding the population of T cells in these mice, as usually occurs during antiretroviral therapy in humans, triggered an IRIS-like disease. In addition, the researchers observed that interferon-gamma production by the repopulating T cells in the mice clearly facilitated the development of experimentally induced IRIS. The study also implicated a type of immune cell known as a macrophage in sparking IRIS in the mice.

ARTICLES: LRV Antonelli et al. Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood DOI: 10.1182/blood-2010-05-285080 (2010).

DL Barber et al. Th1-driven immune reconstitution disease in Mycobacterium avium-infected mice. Blood DOI: 10.1182/blood-2010-05-286336 (2010).

WHO: Irini Sereti, M.D., M.H.S., a clinical investigator in the NIAID Laboratory of Immunoregulation, and Daniel Barber, Ph.D., a postdoctoral fellow in the NIAID Laboratory of Parasitic Diseases, are available to discuss the research.

CONTACT: To schedule interviews, please contact Laura Sivitz Leifman, 301-402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit

Laura Sivitz Leifman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>