Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New vaccine shows promise as stronger weapon against both tuberculosis and leprosy


UCLA-led research finds that a variant of an existing vaccine offers stronger protection against both diseases

In many parts of the world, leprosy and tuberculosis live side-by-side. Worldwide there are approximately 233,000 new cases of leprosy per year, with nearly all of them occurring where tuberculosis is endemic.

Antigen 85B Structure

This image depicts the structure of antigen 85B.

Credit: Reproduced from Anderson , J. Molec. Biol. 307:671, 2001.

The currently available century-old vaccine Bacille Calmette-Guerin, or BCG, provides only partial protection against both tuberculosis and leprosy, so a more potent vaccine is needed to combat both diseases. UCLA-led research may have found a stronger weapon against both diseases.

In a study published in the September issue of the peer-reviewed journal Infection and Immunity, the researchers found that rBCG30, a recombinant variant of BCG that overexpresses a highly abundant 30 kDa protein of the tuberculosis bacterium known as Antigen 85B, is superior to BCG in protecting against tuberculosis in animal models, and also cross protects against leprosy. In addition, they found that boosting rBCG30 with the Antigen 85B protein, a protein also expressed by the leprosy bacillus, provides considerably stronger protection against leprosy.

... more about:
»Antigen »BCG »Health »TB »bacteria »diseases »effectiveness »immune »leprosy

"This is the first study demonstrating that an improved vaccine against tuberculosis also offers cross-protection against Mycobacterium leprae, the causative agent of leprosy," said Dr. Marcus A. Horwitz, professor of medicine and microbiology, immunology and molecular genetics, and the study's senior author. "That means that this vaccine has promise for better protecting against both major diseases at the same time.

"It is also the first study demonstrating that boosting a recombinant BCG vaccine further improves cross-protection against leprosy," he added.

In one experiment, mice were immunized with either rBCG30 or the old BCG vaccine, or they were given a salt solution. Ten weeks later, the mice were injected with live leprosy bacteria into their footpads and seven months after that, the number of leprosy bacteria in their footpads was measured. The researchers found that the mice given BCG or rBCG30 had much fewer leprosy bacteria in their footpads than the mice given the salt solution. Additionally, mice immunized with rBCG30 had significantly fewer leprosy bacteria than those vaccinated with BCG.

In a second experiment, the mice were first immunized with BCG or rBCG30, and then immunized with a booster vaccine (r30) consisting of the TB bacterium's 30-kDa Antigen 85B protein in adjuvant — that is, in a chemical formulation that enhances the immune response. The group of mice immunized with rBCG30 and boosted with r30 had no detectable leprosy bacteria in their footpads, in contrast to groups of mice immunized with all other vaccines tested, including BCG and rBCG30 alone and BCG boosted with r30.

In other experiments, the immune responses of the mice were measured after vaccination. Mice immunized with rBCG30 and boosted with r30 had markedly enhanced immune responses to the leprosy bacterium's version of the Antigen 85B protein, which is very similar to the one expressed by the tuberculosis bacillus, compared with mice immunized with the other vaccines and vaccine combinations.

A Phase 1 human trial for rBCG30 has proven that it is safe and significantly more effective than BCG, and it is the only candidate replacement vaccine for BCG tested thus far to satisfy both of these key clinical criteria. Horwitz noted that this most recent study, however, was conducted in an animal model of leprosy, so further study is needed to gauge the effectiveness of the rBCG30 vaccine in protecting against leprosy in humans.

The next step in the research will be to test the rBCG30 vaccine for efficacy in humans against TB. If it's effective against TB, then the next step would be to test its effectiveness in humans against leprosy.


The study's co-authors are Thomas Gillis of Louisiana State University and Michael Tullius of UCLA.

Grants from the National Institutes of Health (AI031338) and the National Hansen's Disease Programs funded this study. In addition, grants from UCLA's Jonsson Comprehensive Cancer Center (P30 CA016042) and the Center for AIDS Research (5P30 AI028697) supported flow cytometry studies used to measure immune responses, and the American Leprosy Missions supported the nude mouse colony used for the propagation of M. leprae.

Enrique Rivero | Eurek Alert!
Further information:

Further reports about: Antigen BCG Health TB bacteria diseases effectiveness immune leprosy

More articles from Health and Medicine:

nachricht Breast cancer drug beats superbug
13.10.2015 | University of California - San Diego

nachricht Allergic asthma: UFZ researchers identify a key molecule
12.10.2015 | Helmholtz Centre for Environmental Research (UFZ),

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New Oregon approach for 'nanohoops' could energize future devices

13.10.2015 | Life Sciences

Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix

13.10.2015 | Life Sciences

Breast cancer drug beats superbug

13.10.2015 | Health and Medicine

More VideoLinks >>>