Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy could treat poor blood circulation caused by peripheral artery disease

09.03.2016

An injectable gel was tested in a rat model of critical limb ischemia

Bioengineers and physicians at the University of California, San Diego have developed a potential new therapy for critical limb ischemia, a condition that causes extremely poor circulation in the limbs and leads to an estimated 230,000 amputations every year in North America and Europe alone to prevent the spread of infection and tissue death. The new therapy could prevent or limit amputations for a condition that affects more than 27 million people and is a manifestation of advanced peripheral arterial disease.


Tissue from the skeletal muscle of pigs is spun in detergent until only the fibrous extracellular matrix remains.

Credit: Jacobs School of Engineering/UC San Diego

The therapy consists of injecting in the affected area a gel derived from the natural scaffolding, or extracellular matrix, in skeletal muscle tissue. The team tested the procedure in a rat model of the disease and found that it promotes muscle remodeling and improves blood flow. They published their findings recently in the inaugural issue of the Journal of the American College of Cardiology: Basic to Translational Science.

"This is a unique approach that not only helps repair the damaged vascular system, but also helps restore muscle tissue," said Karen Christman, a professor of bioengineering at the Jacobs School of Engineering and the Sanford Consortium for Regenerative Medicine at UC San Diego and the paper's senior author.

"Avoiding or limiting extent of amputations is a huge benefit for patients," said Dr. Ehtisham Mahmud, chief of cardiovascular medicine at the Sulpizio Cardiovascular Center at UC San Diego and a study co-investigator.

Christman and Mahmud partnered to make sure the study's design would eventually help patients when the therapy was ready for the clinic--a step that should take about two years. "This is what makes UC San Diego unique," said Mahmud. "We are bringing together engineering and medicine and demonstrating the translational implications of preclinical research."

As far as researchers know, no one had tried to use an injectable material by itself to treat both the low blood flow and weakened skeletal muscle in critical limb ischemia.

Peripheral arterial disease and critical limb ischemia

Peripheral arterial disease patients suffer from poor circulation in their limbs, which can lead to critical tissue damage. The condition is associated with atherosclerosis in old age, diabetes and smoking. It affects men and women equally. In the most extreme form, called critical limb ischemia, a severe obstruction of arteries in the limbs reduces blood flow to hands, feet and legs. Some of Mahmud's patients experience severe pain in their limbs. Some already suffer from tissue necrosis, or amputations. Others suffer from wounds that won't heal and get infected because they lack proper blood supply.

For these patients, traditional surgery or endovascular procedures can often reestablish normal blood flow. But when these interventions fail or aren't possible, limited options remain. So far, potential therapies for these patients, including using growth factor, gene or cell therapy, have proven problematic and costly. Amputations end up being a common option for treatment in severe cases of critical limb ischemia, Mahmud said.

Injectable gel therapy

Christman's team had already shown that injection of a gel derived from cardiac muscle tissue extracted from pigs could help repair the heart after a heart attack. The tissue is stripped of cells, leaving behind a scaffold of the extracellular matrix from cardiac muscle, which acts a regenerative environment where cells can grow again.

Using this same concept, Christman and her team now are turning their attention to peripheral artery disease and critical limb ischemia. They developed a material that was derived from the skeletal muscle of pigs to treat damaged skeletal muscle in these patients. Researchers injected the gel into the affected area in a rat model of the disease seven days post-surgery and monitored blood flow in the rats' limbs up to 35 days after injection.

Researchers found that the hydrogel increased the diameter of the rats' larger blood vessels, called arterioles. The increased diameter led to improved blood flow in the limbs. By day 35, the size and structure of muscle fibers in the rats treated with the hydrogel was comparable to that in healthy rats.

The gel, which forms a fibrous scaffold upon injection, also attracted muscle stem cells to the affected area. Gene expression analysis showed that inflammatory response and cell death decreased while blood vessel and muscle development pathways increased in rats injected with the gel.

Next steps include looking at other disease models in animals and refining preclinical safety protocols and quality control for manufacturing. Ventrix, a startup cofounded by Christman, partially licensed the technology from UC San Diego for clinical applications.

###

Jessica L. Ungerleider and Todd D. Johnson from the Department of Bioengineering at the University of California, San Diego, were co-first authors of the study. Other authors included UC San Diego bioengineers Melissa J. Hernandez, Dean I. Elhag and Rebecca L. Braden; Monika Dzieciatkowska and Kirk C. Hansen from the Department of Biochemistry and Molecular Genetics at the School of Medicine at the University of Colorado, Aurora; and Kent G. Osborn from the Animal Care Program at UC San Diego.

Funding was provided in part by the Heart, Lung and Blood Institute at the National Institutes of Health and the American Heart Association.

Media Contact

Ioana Patringenaru
ipatrin@eng.ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>