Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New leukemia treatment offers hope

23.09.2016

Antibodies directed against cancer stem cells could help patients with acute myeloid leukemia.

An antibody drug that targets a surface marker on cancer stem cells could offer a promising new therapeutic approach for treating acute myeloid leukemia (AML), a form of blood cancer that affects an estimated 50,000 people in Saudi Arabia.


Antibodies that block CD44 could help destroy acute myeloid leukemia cells. © 2016 KAUST

The leukemia stem cells responsible for propagating the disease express a protein on their surface called CD44. Antibodies that block CD44 have been shown to trigger the stem cells to mature, leading to a reduction in the growth and proliferation of these stubbornly hard-to-treat cells. But it wasn’t clear how or why this happens.

Jasmeen Merzaban and her colleagues from King Abdullah University of Science and Technology (KAUST), Saudi Arabia, studied the signaling pathways that change through treatment with a CD44-directed antibody [1]. Working with both human AML cell lines and a mouse model, the researchers showed that inhibiting CD44 with the antibody led to a decrease in the expression of two central pathways implicated in the aberrant growth of cancer cells: the PI3K (phosphoinositide 3-kinase) and the mTOR (mammalian target of rapamycin) pathways.

Notably, the antibody blocked both of the structurally distinct complexes that include mTOR. That’s important because a complete shutdown of mTOR signaling is probably needed to disrupt the multiple feedback loops that can fuel cancer growth, and drugs that only inhibit one of these complexes have in the past, failed to demonstrate a therapeutic benefit for patients with AML.

“A growing body of evidence suggests that a broader inhibitor would result in a more potent therapeutic effect,” said Merzaban.

An anti-CD44 drug like the one tested by Merzaban might just be that broad inhibitor. Encouragingly, in her team’s hands it doesn’t seem to have toxicity issues.

“We show that the anti-CD44 antibody used for our studies had no effect on normal blood cells,” said Samah Gadhoum, a research scientist in Merzaban’s lab group at KAUST and the first author of the study. “However, more work is needed to carefully determine the effect of these antibodies on other cells and other cellular functions within the body.”

Merzaban, Gadhoum and their colleagues are now running follow-up experiments. For now, though, all their results “support the use of anti-CD44 antibodies for the treatment of AML as a differentiation-inducing therapy,” said Merzaban.

As an added bonus: Unlike other therapies that seem to work only for certain forms of the disease, “the interesting thing about CD44-antibody treatment is that it is able to induce differentiation of many more AML subtypes,” said Merzaban.

Associated links

Journal information

[1] Gadhoum, S.Z., Madhoun, N.Y., Abuelela, A.F. & Merzaban, J.S. Anti-CD44 antibodies inhibit both mTORC1 and mTORC2: A new rationale supporting CD44-induced AML differentiation therapy. Leukemia advance online publication 8 August 2016 (doi: 10.1038/leu.2016.221).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>