Neural Responses Indicate our Willingness to Help

Our reactions to shocking news clips on television demonstrate that human beings can remain remarkably cool in the face of other peoples’ suffering. And yet, we are also ready to sacrifice ourselves for others, even if no tangible reward awaits. Why such a difference? Social psychology has proven that our propensity to help is modulated by social factors.

Little, however, was known about the underlying neural processes and how they are influenced by group affiliation. Now, research in neuroscience at the University of Zurich has documented that the brain regions activated when witnessing people suffer vary according to whether those suffering are perceived as group members. “And most importantly, the differences in neural responses indicate whether the observer will help the suffering person later on,” as neuroscientist Grit Hein confirmed.

Grit Hein, Tania Singer (now director at the Max Planck Institute for Human Cognitive and Brain Sciences) and social psychologist C. Daniel Batson (University of Kansas, USA) measured the neural responses of soccer fans: Test subjects watched either a member of their own group (ingroup) or someone from a rival team (outgroup) be subjected to painful shocks through electrodes attached to the back of their hands. The test subjects could then decide whether or not to help an ingroup or outgroup member by receiving a portion of the pain themselves. Helping had a high cost as it was inherently linked to personal physical pain. Test persons also had the option to simply watch the other person receive the shocks or to distract themselves from the unpleasant scene by watching a soccer video.

The scientific journal Neuron has published the revealing results of the study: Should a person from an ingroup suffer pain, brain regions associated with empathy for others’ pain are activated. A greater degree of activation in these regions correlates with a greater willingness to help. If, however, test subjects saw a member of an outgroup subjected to pain, brain regions motivated by reward were activated. A high degree of reward-related activation corresponds to a negative perception of the person belonging to the rival team, and the willingness to help decreases as brain activation rises.

Measuring neural responses also proves to be a more accurate prediction tool than questionnaires when trying to determine how willing people are to help people outside of their group affiliation. “After all, who is going to admit they’d help a friend in need but let an outsider suffer?” observed Grit Hein.

Grit Hein received the Branco-Weiss Fellowship from the Society in Science (Zurich) for this study and other work.

Reference:
Hein, G., Silani, G., Peuschoff, K., Batson, C. D., & Singer. T. Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, doi: 10.1016/j.neuron.2010.09.003
Contact:
Dr. Grit Hein
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 3741
E-Mail: ghein@iew.uzh.ch
Dr. Tania Singer
Director
Max Planck Institute for Human Cognitive and Brain Sciences
Department of Social Neuroscience
Tel. +49 341 9940 2686
E-Mail: singer@cbs.mpg.de

Media Contact

Beat Müller idw

More Information:

http://www.uzh.ch

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors