Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Responses Indicate our Willingness to Help

08.10.2010
Witnessing a person from our own group or an outsider suffer pain causes neural responses in two very different regions of the brain. And, the specific region activated reveals whether or not we will help the person in need. Researchers at the University of Zurich studied the brain responses of soccer fans and now have neurobiological evidence for why we are most willing to help members of our own group.

Our reactions to shocking news clips on television demonstrate that human beings can remain remarkably cool in the face of other peoples’ suffering. And yet, we are also ready to sacrifice ourselves for others, even if no tangible reward awaits. Why such a difference? Social psychology has proven that our propensity to help is modulated by social factors.

Little, however, was known about the underlying neural processes and how they are influenced by group affiliation. Now, research in neuroscience at the University of Zurich has documented that the brain regions activated when witnessing people suffer vary according to whether those suffering are perceived as group members. “And most importantly, the differences in neural responses indicate whether the observer will help the suffering person later on,” as neuroscientist Grit Hein confirmed.

Grit Hein, Tania Singer (now director at the Max Planck Institute for Human Cognitive and Brain Sciences) and social psychologist C. Daniel Batson (University of Kansas, USA) measured the neural responses of soccer fans: Test subjects watched either a member of their own group (ingroup) or someone from a rival team (outgroup) be subjected to painful shocks through electrodes attached to the back of their hands. The test subjects could then decide whether or not to help an ingroup or outgroup member by receiving a portion of the pain themselves. Helping had a high cost as it was inherently linked to personal physical pain. Test persons also had the option to simply watch the other person receive the shocks or to distract themselves from the unpleasant scene by watching a soccer video.

The scientific journal Neuron has published the revealing results of the study: Should a person from an ingroup suffer pain, brain regions associated with empathy for others’ pain are activated. A greater degree of activation in these regions correlates with a greater willingness to help. If, however, test subjects saw a member of an outgroup subjected to pain, brain regions motivated by reward were activated. A high degree of reward-related activation corresponds to a negative perception of the person belonging to the rival team, and the willingness to help decreases as brain activation rises.

Measuring neural responses also proves to be a more accurate prediction tool than questionnaires when trying to determine how willing people are to help people outside of their group affiliation. “After all, who is going to admit they’d help a friend in need but let an outsider suffer?” observed Grit Hein.

Grit Hein received the Branco-Weiss Fellowship from the Society in Science (Zurich) for this study and other work.

Reference:
Hein, G., Silani, G., Peuschoff, K., Batson, C. D., & Singer. T. Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, doi: 10.1016/j.neuron.2010.09.003
Contact:
Dr. Grit Hein
Laboratory for Social and Neural Systems Research
University of Zurich
Tel. +41 44 634 3741
E-Mail: ghein@iew.uzh.ch
Dr. Tania Singer
Director
Max Planck Institute for Human Cognitive and Brain Sciences
Department of Social Neuroscience
Tel. +49 341 9940 2686
E-Mail: singer@cbs.mpg.de

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>