Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MyCode Project: the Link to Personalized Medicine

24.02.2009
Through the study of genetic links between patients and chronic diseases, Geisinger Health System researchers are hoping to gain a better understanding of how to prevent, diagnose and treat these diseases.

People differ from one another in millions of ways. For starters, there is eye color, hair color, body build, and tendencies toward certain diseases and conditions. We know that genes determine these differences. Now, we also are learning that genes affect how our bodies respond to disease. Through the study of genetic links between patients and chronic diseases, Geisinger Health System researchers are hoping to gain a better understanding of how to prevent, diagnose and treat these diseases.

A new program at Geisinger called MyCode is capitalizing on the health system’s unique ability to utilize its integrated infrastructure to link genomic information with one of the nation's most advanced electronic health record (EHR) systems and fastest growing biobanks. The result is a powerful tool that is the bridge to Geisinger's personalized medicine program – an initiative that promises to ultimately re-engineer the paradigm of healthcare from reactive to predictive and, with the help of researchers and physicians, engage patients in their personal health and wellness.

Geisinger patients learn about MyCode at Geisinger Medical Group sites and about 90 percent choose to participate. With written consent, participants agree to provide a deoxyribonucleic acid (DNA) sample – chemical material that is inherited and extracted from a blood sample - at their next scheduled blood draw. From there, the sample is linked with EHR information and routed to the system’s biobank for quick researcher access.

Since launching the MyCode pilot program two years ago, researchers have collected 20,000 DNA samples – proportionately more samples than from any other biobanking facility nationwide. Samples generally fall into two groups: those from patients seeking general health and wellness care from their family physicians and those from patients seeking specialty medical care, such as bariatric surgery.

These samples are helping Geisinger researchers gain critical insight into patients’ risk of chronic health conditions, such as abdominal aortic aneurysms (AAA), severe asthma, depression, obesity, familial ureterocoele, digoxin/phenytoin toxicity, overactive bladder syndrome and various pain conditions.

“This information will ultimately improve health by motivating people to make positive lifestyle changes, such as exercising, eating healthy, quitting smoking as well as decisions to seek further medical evaluation and preventive strategies,” said Geisinger Center for Health Research Director Walter “Buzz” Stewart, Ph.D., M.P.H.

A number of safeguards protect the privacy of participants’ genetic and EHR information. Confidentiality and subject anonymity are strictly maintained by de-identifying the samples. Samples are assigned specific identification numbers, encoded, encrypted and entered into a secure database. A governance board – with Geisinger and non-Geisinger representation - meets several times a year to audit the process.

“The goal of MyCode is to translate genetic data into specific knowledge about a disease that is clinically relevant and will enhance patient care,” said Glenn Gerhard, M.D., staff scientist and director of Geisinger’s Genomics Core. “Geisinger’s integrated healthcare delivery system, geography, as well as its electronic health record, biobank, lab, data, and basic science and population-based research programs, make this an outstanding environment for discovery."

“MyCode aims to discover genes that increase a person’s risk of chronic disease and help us understand why people respond differently to treatments,” explained Weis Center for Research Director David Carey, Ph.D. “The more we know about the causes of disease, the greater our ability to provide more effective treatment and, ultimately, prevent disease from occurring.”

According to Carey, by matching genes with a comprehensive profile of a specific chronic condition, researchers are able to study groups of patients with similar signs and symptoms and begin to predict and understand how they will respond to a specific treatment or medication.

“This project provides the opportunity to move genetics from the laboratory directly to patient care,” explained Stewart. “MyCode is driving research that promises to improve the health and healthcare of patients nationwide.”

About Geisinger Health System
Founded in 1915, Geisinger Health System (Danville, PA) is one of the nation’s largest integrated health services organizations. Serving more than two million residents throughout central and northeastern Pennsylvania, the physician-led organization is at the forefront of the country's rapidly emerging electronic health records movement. Geisinger is comprised of two medical center campuses, three hospitals, a 740-member group practice, a not-for-profit health insurance company and the Henry Hood Center for Health Research—dedicated to creating innovative new models for patient care, satisfaction and clinical outcomes.

Patricia Urosevich | Newswise Science News
Further information:
http://www.geisinger.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>