Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle ‘Synergies’ May be Key to New Stroke Treatment

22.10.2009
What’s new: Researchers at MIT and San Camillo Hospital in Venice, Italy, have shown that motor impairments in stroke patients can be understood as impairments in specific combinations of muscle activity, known as synergies.

Why it matters: Previous work in animals and humans has shown that groups of muscles tend to be co-activated as a unit, in predicable patterns, or synergies, across a wide range of movements.

These synergies are thought to represent the fundamental building blocks from which the brain constructs complex movements. The new findings support this concept and also suggest new approaches to the rehabilitation of stroke patients. Stroke is a leading cause of long-term disability in the US, with about 700,000 new or recurrent cases each year.

How they did it: The researchers, led by Emilio Bizzi, an MIT Institute Professor and a member of the McGovern Institute for Brain Research and the Department of Brain and Cognitive Sciences, used electromyographic (EMG) recording to measure activity in arm and shoulder muscles of 8 stroke patients as they performed a variety of reaching movements. The patients had stroke damage in one cortical hemisphere only, so one arm was impaired while the other was largely unaffected. The researchers used computational methods to identify groups of muscles whose activation was correlated across movements. In 7 out of 8 patients, these correlations, or synergies, were largely identical between the affected and unaffected arms, even though the actual movements were very different between the two arms. The results support the view that the synergies are encoded in the brainstem or spinal cord, areas that were unaffected in these patients. “We show that descending neural signals from the motor cortex select, activate and combine a small number of muscle synergies that are specified by networks in the spinal cord or brainstem,” Bizzi explains, “and different movements emerge as these synergies are recruited to various degrees.”

Next steps: The findings suggest a new approach to the rehabilitation of stroke patients. By identifying synergies whose activations are affected following a stroke, it may be possible to develop focused rehabilitation methods that specifically train the impaired synergies. As a first step toward this goal, the researchers plan to monitor a group of stroke patients as they undergo rehabilitation therapy, to determine whether the post-stroke improvements in motor function can be explained as changes in the activation pattern of specific synergies.

Source: Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. (2009). Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci (USA). Oct 19 2009.

Funding: McGovern Institute for Brain Research at MIT and the Italian Ministry of Health

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>