Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis: damaged myelin not the trigger

27.02.2012
Damaged myelin in the brain and spinal cord does not cause the autoimmune disease Multiple sclerosis (MS), neuroimmunologists from the University of Zurich have now demonstrated in collaboration with researchers from Berlin, Leipzig, Mainz and Munich.

In the current issue of Nature Neuroscience, they therefore rule out a popular hypothesis on the origins of MS. The scientists are now primarily looking for the cause of the development of MS in the immune system instead of the central nervous system.

Millions of adults suffer from the incurable disease multiple sclerosis (MS). It is relatively certain that MS is an autoimmune disease in which the body’s own defense cells attack the myelin in the brain and spinal cord. Myelin enwraps the nerve cells and is important for their function of transmitting stimuli as electrical signals. There are numerous unconfirmed hypotheses on the development of MS, one of which has now been refuted by the neuroimmunologists in their current research: The death of oligodendrocytes, as the cells that produce the myelin sheath are called, does not trigger MS.

Neurodegenerative hypothesis obsolete

With their research, the scientists disprove the so-called “neurodegenerative hypothesis”, which was based on observations that certain patients exhibited characteristic myelin damage without a discernable immune attack. In the popular hypothesis, the scientists assume that MS-triggering myelin damage occurs without the involvement of the immune system. In this scenario, the immune response against myelin would be the result – and not the cause – of this pathogenic process.

The aim of the research project was to confirm or disprove this hypothesis based on a new mouse model. Using genetic tricks, they induced myelin defects without alerting the immune defense. “At the beginning of our study, we found myelin damage that strongly resembled the previous observations in MS patients,” explains Burkhard Becher, a professor at the University of Zurich. “However, not once were we able to observe an MS-like autoimmune disease.” In order to ascertain whether an active immune defense causes the disease based on a combination of an infection and myelin damage, the researchers conducted a variety of further experiments – without success. “We were unable to detect an MS-like disease – no matter how intensely we stimulated the immune system,” says Ari Waisman, a professor from the University Medical Center Mainz. “We therefore consider the neurodegenerative hypothesis obsolete.”

Focus on immune system

The teams involved in the study want to continue researching the cause and origins of MS. “In light of these and other new findings, research on the pathogenesis of MS is bound to concentrate less on the brain and more on the immune system in future,” says Professor Thorsten Buch from the Technischen Universität München.

Further reading:
Giuseppe Locatelli, Simone Wörtge, Thorsten Buch, Barbara Ingold, Friederike Frommer, Bettina Sobottka, Martin Krueger, Khalad Karram, Claudia Bühlmann, Ingo Bechmann, Frank L. Heppner, Ari Waisman and Burkhard Becher. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nature Neuroscience. February 26, 2012. Doi: 10.1038/nn.3062
Contact:
Professor Burkhard Becher
Institute of Experimental Immunology
University of Zurich
Tel.: +41 44 635 37 01
Email: burkhard.becher@neuroimm.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>