Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MS: Rebuilding in the brain

02.10.2012
In patients suffering from multiple sclerosis, the brain is capable of compensating for certain disorders to some extent. How it does this has been examined in detail by medics from Würzburg University Hospital. Their findings may help to improve treatment.

Patients who suffer from multiple sclerosis (MS) typically present with centers of inflammation in the brain and spinal cord, which cause symptoms that range in severity depending on site and size. For example, sufferers feel a tingling sensation in their extremities, they stumble more or they have difficulties seeing. In extreme cases, they become incapable of moving around on their own and are confined to a wheelchair.

How the brain compensates for damage

The brain, however, often manages to minimize the functional damage caused by such centers, i.e. the damage that is noticeable to the patient. It has various “tools” at its disposal for this purpose: firstly, processes that are based on a rapid reinforcement or reduction of nerve cell contacts; secondly, the transfer (usually with a delay) of certain tasks from the damaged region of the brain to a healthy one. “Plasticity” is the name science has given to this ability on the part of the brain to adapt to changed conditions.

The answer to the question as to which mechanisms actually underlie this compensation in MS patients is of great clinical value. If medicine were to manage to boost the compensation mechanisms in a suitable location with the help of drugs or physiotherapy, it might be possible to delay or even prevent the onset of disabilities that are caused by MS.
Plasticity in the locomotor system

Now scientists from the University of Würzburg have managed to make some progress in the search for the processes responsible. Together with colleagues from Bamberg and Leipzig they have taken are closer look at a variant of the neuroplastic processes that begin rapidly: the so-called excitability-decreasing plasticity, which is significant in the focus on certain movements. The team led by the medics Professor Joseph Claßen and Dr. Daniel Zeller has now published its findings in the online journal BioMed Central – Neurology.

“We were able to show that an early form of neuroplasticity is fully retained in the locomotor system of patients slightly to moderately affected by MS despite pre-existing inflammatory damage,” concludes Daniel Zeller, physician at the university’s Department of Neurology.
The study

14 MS patients and a control group of 14 healthy participants were examined by the scientists as part of this study. With the help of Transcranial Magnetic Stimulation (TMS), they temporarily “paralyzed” an area of the brain that is responsible for hand movement and then examined whether “healthy brains” and “MS brains” differ in their response to this. “Studying this form of plasticity in multiple sclerosis is especially interesting,” says Zeller. After all, it directly targets those mechanisms that limit the excitability of neurons. This means that it might be possible to translate the results directly into treatment strategies.

So, what do these results reveal? “Together with the findings of an earlier study we conducted we can say that there is no evidence that the early stages of MS are accompanied by a disruption of the initial compensation steps in the brain,” says Zeller.

In terms of rehabilitation for sufferers this means that it would be better if corresponding approaches were aimed at boosting later forms of plasticity, such as the recruitment of other regions of the brain for the execution of a certain task.

About multiple sclerosis

The “disease with 1000 faces” is how multiple sclerosis (MS) is sometimes described. The reason for this name is that the clinical picture can differ dramatically from patient to patient – in terms of both the progression of the disease and the symptoms suffered.

However, there is one finding that is the same in principle for everyone: multiple sclerosis is an autoimmune disease where one particular type of brain cell, known as an oligodendrocyte, is destroyed by the immune system. Oligodendrocytes form an insulating layer around the extensions of nerve cells that is required for efficient impulse conduction. If this conduction is disturbed as a consequence of damage to the insulating layer, the nerves cannot transfer relevant “messages” as effectively as before.

According to the Multiple Sclerosis Society of Germany, around 2.5 million people worldwide have MS. The latest projections indicate that some 130,000 sufferers live in Germany; around 2,500 people are diagnosed with the disease each year.

Excitability decreasing central motor plasticity is retained in multiple sclerosis patients. Daniel Zeller, Su-Yin Dang, David Weise, Peter Rieckmann, Klaus V Toyka, Joseph Classen. BMC Neurology 2012, 12:92 doi:10.1186/1471-2377-12-92

Contact
Dr. Daniel Zeller, T: +49 (0)931 201-23115,
e-mail: Zeller_D@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>