Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MS: Rebuilding in the brain

02.10.2012
In patients suffering from multiple sclerosis, the brain is capable of compensating for certain disorders to some extent. How it does this has been examined in detail by medics from Würzburg University Hospital. Their findings may help to improve treatment.

Patients who suffer from multiple sclerosis (MS) typically present with centers of inflammation in the brain and spinal cord, which cause symptoms that range in severity depending on site and size. For example, sufferers feel a tingling sensation in their extremities, they stumble more or they have difficulties seeing. In extreme cases, they become incapable of moving around on their own and are confined to a wheelchair.

How the brain compensates for damage

The brain, however, often manages to minimize the functional damage caused by such centers, i.e. the damage that is noticeable to the patient. It has various “tools” at its disposal for this purpose: firstly, processes that are based on a rapid reinforcement or reduction of nerve cell contacts; secondly, the transfer (usually with a delay) of certain tasks from the damaged region of the brain to a healthy one. “Plasticity” is the name science has given to this ability on the part of the brain to adapt to changed conditions.

The answer to the question as to which mechanisms actually underlie this compensation in MS patients is of great clinical value. If medicine were to manage to boost the compensation mechanisms in a suitable location with the help of drugs or physiotherapy, it might be possible to delay or even prevent the onset of disabilities that are caused by MS.
Plasticity in the locomotor system

Now scientists from the University of Würzburg have managed to make some progress in the search for the processes responsible. Together with colleagues from Bamberg and Leipzig they have taken are closer look at a variant of the neuroplastic processes that begin rapidly: the so-called excitability-decreasing plasticity, which is significant in the focus on certain movements. The team led by the medics Professor Joseph Claßen and Dr. Daniel Zeller has now published its findings in the online journal BioMed Central – Neurology.

“We were able to show that an early form of neuroplasticity is fully retained in the locomotor system of patients slightly to moderately affected by MS despite pre-existing inflammatory damage,” concludes Daniel Zeller, physician at the university’s Department of Neurology.
The study

14 MS patients and a control group of 14 healthy participants were examined by the scientists as part of this study. With the help of Transcranial Magnetic Stimulation (TMS), they temporarily “paralyzed” an area of the brain that is responsible for hand movement and then examined whether “healthy brains” and “MS brains” differ in their response to this. “Studying this form of plasticity in multiple sclerosis is especially interesting,” says Zeller. After all, it directly targets those mechanisms that limit the excitability of neurons. This means that it might be possible to translate the results directly into treatment strategies.

So, what do these results reveal? “Together with the findings of an earlier study we conducted we can say that there is no evidence that the early stages of MS are accompanied by a disruption of the initial compensation steps in the brain,” says Zeller.

In terms of rehabilitation for sufferers this means that it would be better if corresponding approaches were aimed at boosting later forms of plasticity, such as the recruitment of other regions of the brain for the execution of a certain task.

About multiple sclerosis

The “disease with 1000 faces” is how multiple sclerosis (MS) is sometimes described. The reason for this name is that the clinical picture can differ dramatically from patient to patient – in terms of both the progression of the disease and the symptoms suffered.

However, there is one finding that is the same in principle for everyone: multiple sclerosis is an autoimmune disease where one particular type of brain cell, known as an oligodendrocyte, is destroyed by the immune system. Oligodendrocytes form an insulating layer around the extensions of nerve cells that is required for efficient impulse conduction. If this conduction is disturbed as a consequence of damage to the insulating layer, the nerves cannot transfer relevant “messages” as effectively as before.

According to the Multiple Sclerosis Society of Germany, around 2.5 million people worldwide have MS. The latest projections indicate that some 130,000 sufferers live in Germany; around 2,500 people are diagnosed with the disease each year.

Excitability decreasing central motor plasticity is retained in multiple sclerosis patients. Daniel Zeller, Su-Yin Dang, David Weise, Peter Rieckmann, Klaus V Toyka, Joseph Classen. BMC Neurology 2012, 12:92 doi:10.1186/1471-2377-12-92

Contact
Dr. Daniel Zeller, T: +49 (0)931 201-23115,
e-mail: Zeller_D@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>