Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MRI-guided laser procedure provides alternative to epilepsy surgery


Good outcomes with minimally invasive procedure for one type of epilepsy, reports neurosurgery

For patients with mesial temporal lobe epilepsy (MTLE) that can't be controlled by medications, a minimally invasive laser procedure performed under MRI guidance provides a safe and effective alternative to surgery, suggests a study in the June issue of Neurosurgery , official journal of the Congress of Neurological Surgeons . The journal is published by Lippincott Williams & Wilkins , a part of Wolters Kluwer Health.

"Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy (SLAH) is a technically novel, safe and effective alternative to open surgery," according to the new research by Dr. Robert E. Gross of Emory University School of Medicine, Atlanta, and colleagues.

MRI Guides Precise Laser Destruction of Area Causing Epilepsy…

The researchers report their experience with MRI-guided SLAH in 13 adult patients with epilepsy mapped to a part of the brain called the mesial temporal lobe. The patients, median age 24 years, had "intractable" seizures despite treatment with antiepileptic drugs.

In the SLAH procedure, a saline-cooled fiberoptic laser probe was precisely targeted to the area of the brain—the "amygdalohippocampal complex"—responsible for the procedures. Using real-time MRI guidance, the neurosurgeon was able to pinpoint the area of the brain responsible for seizure activity and destroy (ablate) by computer-controlled laser energy, without harming neighboring brain tissue.

The technical aspects of the procedure were successfully carried out in all patients. Using thermal imaging and MRI guidance, the surgeons were able to see the area of laser ablation as treatment proceeded. The average laser exposure time was just under ten minutes.

On average, 60 percent of the amygdalohippocampal complex was destroyed in the SLAH procedure; the average length of the ablated area was 2.5 centimeters. Median time spent in the hospital was just one day—compared to a typical two to five-day stay after conventional temporal lobe surgery, and SLAH patients did not have to be admitted to the intensive care unit.

…With Good Control of Seizures at Follow-Up

Most important, the procedure was effective in reducing or eliminating seizures in patients with MTLE. At a median of 14 months after SLAH, ten out of thirteen patients achieved meaningful seizure reductions, while seven were free of "disabling seizures." This included six out of nine patients whose epilepsy was caused by an abnormality called mesial temporal sclerosis.

Although some complications occurred, none were directly caused by laser application. Two patients had an additional SLAH procedure to control seizures, and another patient underwent standard open surgery.

Open brain surgery is the standard treatment for patients with intractable MTLE. Surgery has a high success rate, but carries a significant risk of neurological and cognitive (intellectual) impairment. Minimally invasive approaches like the new MRI-guided laser ablation technique might produce similar seizure control with lower risks than surgery.

The new study shows "technical feasibility and encouraging results" with the minimally invasive MRI-guided SLAH technique for patients with MTLE. Effectiveness in relieving or eliminating seizures approaches that of surgery—perhaps especially among patients whose seizures are caused by mesial temporal sclerosis. "These are promising results considering that this reflects our initial experience, and results may improve with greater experience with this novel technique," notes Dr. Gross.

"Such minimally invasive techniques may be more desirable to patients and result in increased use of epilepsy surgery among the large number of medically intractable epilepsy patients," Dr. Gross and colleagues conclude. They note that a larger, longer-term study of SLAH is underway, including assessment of the effects on cognitive function as well as seizures.


Click here to read the "Real-Time Magnetic Resonance-Guided Stereotactic Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy."

About Neurosurgery

Neurosurgery , the Official Journal of the Congress of Neurological Surgeons , is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Wolters Kluwer Health

Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries worldwide, clinicians rely on Wolters Kluwer Health's market leading information-enabled tools and software solutions throughout their professional careers from training to research to practice. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Ovid®, Pharmacy OneSource®, ProVation® Medical and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2013 annual revenues of €3.6 billion ($4.7 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.

Connie Hughes | Eurek Alert!

Further reports about: MRI MRI-guided SLAH Neurosurgery brain tissue guidance procedure seizures surgery

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>