Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mouse that ROR'ed

02.01.2014
ROR1 oncogene combines with another to accelerate, worsen blood cancer

Researchers at the University of California, San Diego School of Medicine report that an oncogene dubbed ROR1, found on chronic lymphocytic leukemia (CLL) B cells but not normal adult tissues, acts as an accelerant when combined with another oncogene, resulting in a faster-developing, more aggressive form of CLL in mice.

The findings, published in the Dec. 30, 2013 Online Early Edition of PNAS, suggest ROR1 could be an important therapeutic target for patients with CLL, the most common form of blood cancer. Prevalence of CLL in the United States is high: 1 in 20 people over the age of 40 could have apparently pre-cancerous CLL-like cells in their blood. These people may develop actual CLL at a rate of about 1 percent per year. More than 15,000 new cases of CLL are diagnosed each year in the United States. Roughly 4,400 patients with CLL die annually.

The work by principal investigator Thomas Kipps, MD, PhD, Evelyn and Edwin Tasch Chair in Cancer Research, and colleagues continues a series of discoveries about ROR1. Previously, for example, they found an association between ROR1 and the epithelial-mesenchymal transition – the process that occurs during embryogenesis when cells migrate and then grow into new organs during early development. CLL cells exploit ROR1 to spread disease. Called metastasis, it is responsible for 90 percent of cancer-related deaths.

... more about:
»B cells »CLL »Medicine »PNAS »ROR1 »TCL1 »monoclonal antibody

In the PNAS paper, Kipps and colleagues created transgenic mice that expressed human ROR1, then observed that these mice produced B cells (a kind of white blood cell) that were abnormal and resembled human CLL cells while non-transgenic littermates did not.

Next they crossed the ROR1 mice with another transgenic mouse-type that produces an oncogene called TCL1. Oncogenes are genes that can lead to cancer development if over-expressed or mutated. The progeny of these cross-bred mice possessed both oncogenes – ROR1 and TCL1 – and consequently displayed an even greater proclivity toward developing aggressive, fast-acting CLL.

When researchers treated the mice with an anti-ROR1 monoclonal antibody that reduces levels of ROR1, the CLL cells were impaired and more vulnerable to treatment and destruction. Based on these findings, Kipps said investigators at UC San Diego Moores Cancer Center are planning clinical trials in 2014 using a humanized monoclonal antibody that has the same type of activity against human leukemia or cancer cells that express ROR1.

Co-authors are George F. Widhopf II, Bing Cui, Emanuela M. Ghia and Liguang Chen, Department of Medicine, UCSD; Karen Messer, Department of Biostatistics/Bioinformatics, UCSD; Zhouxin Shen and Steven P. Briggs, Cell & Developmental Biology, UCSD; and Carlo M. Croce, Ohio State University School of Medicine.

Funding support came, in part, from the National Institutes of Health grants PO1-CA081534 and R37-CA049870, California Institute for Regenerative Medicine (DR1-01430) and the UC San Diego Foundation Blood Cancer Research Fund.

Disclosure: Thomas Kipps is a member of the Scientific Advisory Boards of Celgene Corporation and Igenica Inc, which have a financial interest in the reported research.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: B cells CLL Medicine PNAS ROR1 TCL1 monoclonal antibody

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>