Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai is first in New York state to perform new Alzheimer's imaging test in clinical setting

20.06.2012
Innovative technique expected to play a critical role in diagnosis and treatment of disease

The Mount Sinai Medical Center is the first institution in New York State to use in the clinical setting a newly approved imaging technique to detect Alzheimer's disease (AD) in people who are cognitively impaired.

Until now, physicians have been limited in their ability to diagnose AD, guided almost exclusively by a patient's mental and behavioral symptoms and family history. The innovative technique—recently approved by the U.S. Food and Drug Administration (FDA), is not only expected to play a critical role in the diagnosis of AD, but in drug research, and the design of clinical trials leading to a cure.

Under the new procedure, patients are injected with a radioactive agent called florbetapir, which binds to the plaques that are hallmark symptoms of AD. The physician then uses a positron emission tomography (PET) scan to highlight the plaques that are binded to the agent. If a large amount of florbetapir is visualized on the image, the patient may have AD. If no plaques are found, this could eliminate AD as a possible cause of the patient's cognitive impairment.

"Until now, a diagnosis of Alzheimer's disease could only be pathologically confirmed at autopsy," said Samuel Gandy, MD, Professor of Neurology and Psychiatry and Director of the Mount Sinai Center for Cognitive Health and NFL Neurological Center at The Mount Sinai Medical Center. "Coupled with traditional clinical examination, florbetapir is a promising tool in helping confirm the diagnosis of a patient who is dealing with cognitive impairment. While we cannot exclude the presence of very low levels of amyloid, a negative test means that a memory problem is likely due to some other cause."

Alzheimer's disease is one of several possible causes of cognitive decline. Symptoms may overlap with other causes of cognitive impairment including memory loss; loss in visuospatial ability and executive function; and behavioral and language difficulties. The imaging technique will be used as an adjunctive tool with traditional methods of diagnosis to help determine if these symptoms are related to AD and if not, eliminate it as a likely cause of them.

"The approval of this agent by the FDA for PET imaging of the brain, already available at The Mount Sinai Medical Center, marks a significant advance in the evaluation of patients suspected of having or being at risk for Alzheimer's Disease," said Josef Machac, MD, Director of Nuclear Medicine and Professor of Radiology at The Mount Sinai Medical Center. "The principal value of this procedure at this time is in excluding beta-amyloid and Alzheimer's disease as cause for memory or cognitive decline. This can help in patient management, and in clinical trials of investigational therapies to find more effective treatment."

Florbetapir is anticipated to be most useful in the research setting, providing scientists with a tool for measuring the efficacy of certain drugs on patients who present with cognitive impairment or AD. The scan will help determine which patients are appropriate for which trials, which drugs are effective and for what duration, and provide a better assessment for disease progression.

"From a research perspective, this imaging technique is a major advance that will propel us forward in designing clinical trials and determining drug efficacy for this debilitating disease," said Dr. Gandy. "I look forward to using it both in my clinical practice to help diagnose my patients, and in my research on the quest for a cure for Alzheimer's disease."

AD is an incurable, progressive neurodegenerative disease affecting more than five million people worldwide, and is the leading cause of dementia in the elderly. Presently, there is no cure for Alzheimer's disease.

Florbetapir is marketed as Amyvid™ by Eli Lilly and Company and Avid Radiopharmaceuticals, Inc., a wholly owned subsidiary of Lilly.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by U.S. News & World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2011, U.S. News & World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and U.S. News & World Report and whose hospital is on the U.S. News & World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>