Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai is first in New York state to perform new Alzheimer's imaging test in clinical setting

20.06.2012
Innovative technique expected to play a critical role in diagnosis and treatment of disease

The Mount Sinai Medical Center is the first institution in New York State to use in the clinical setting a newly approved imaging technique to detect Alzheimer's disease (AD) in people who are cognitively impaired.

Until now, physicians have been limited in their ability to diagnose AD, guided almost exclusively by a patient's mental and behavioral symptoms and family history. The innovative technique—recently approved by the U.S. Food and Drug Administration (FDA), is not only expected to play a critical role in the diagnosis of AD, but in drug research, and the design of clinical trials leading to a cure.

Under the new procedure, patients are injected with a radioactive agent called florbetapir, which binds to the plaques that are hallmark symptoms of AD. The physician then uses a positron emission tomography (PET) scan to highlight the plaques that are binded to the agent. If a large amount of florbetapir is visualized on the image, the patient may have AD. If no plaques are found, this could eliminate AD as a possible cause of the patient's cognitive impairment.

"Until now, a diagnosis of Alzheimer's disease could only be pathologically confirmed at autopsy," said Samuel Gandy, MD, Professor of Neurology and Psychiatry and Director of the Mount Sinai Center for Cognitive Health and NFL Neurological Center at The Mount Sinai Medical Center. "Coupled with traditional clinical examination, florbetapir is a promising tool in helping confirm the diagnosis of a patient who is dealing with cognitive impairment. While we cannot exclude the presence of very low levels of amyloid, a negative test means that a memory problem is likely due to some other cause."

Alzheimer's disease is one of several possible causes of cognitive decline. Symptoms may overlap with other causes of cognitive impairment including memory loss; loss in visuospatial ability and executive function; and behavioral and language difficulties. The imaging technique will be used as an adjunctive tool with traditional methods of diagnosis to help determine if these symptoms are related to AD and if not, eliminate it as a likely cause of them.

"The approval of this agent by the FDA for PET imaging of the brain, already available at The Mount Sinai Medical Center, marks a significant advance in the evaluation of patients suspected of having or being at risk for Alzheimer's Disease," said Josef Machac, MD, Director of Nuclear Medicine and Professor of Radiology at The Mount Sinai Medical Center. "The principal value of this procedure at this time is in excluding beta-amyloid and Alzheimer's disease as cause for memory or cognitive decline. This can help in patient management, and in clinical trials of investigational therapies to find more effective treatment."

Florbetapir is anticipated to be most useful in the research setting, providing scientists with a tool for measuring the efficacy of certain drugs on patients who present with cognitive impairment or AD. The scan will help determine which patients are appropriate for which trials, which drugs are effective and for what duration, and provide a better assessment for disease progression.

"From a research perspective, this imaging technique is a major advance that will propel us forward in designing clinical trials and determining drug efficacy for this debilitating disease," said Dr. Gandy. "I look forward to using it both in my clinical practice to help diagnose my patients, and in my research on the quest for a cure for Alzheimer's disease."

AD is an incurable, progressive neurodegenerative disease affecting more than five million people worldwide, and is the leading cause of dementia in the elderly. Presently, there is no cure for Alzheimer's disease.

Florbetapir is marketed as Amyvid™ by Eli Lilly and Company and Avid Radiopharmaceuticals, Inc., a wholly owned subsidiary of Lilly.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by U.S. News & World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2011, U.S. News & World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and U.S. News & World Report and whose hospital is on the U.S. News & World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>