Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monoamine oxidase A: biomarker for postpartum depression

31.07.2014

Postpartum mood swings correlated with high monoamine oxidase A binding

Many women suffer from baby blues after giving birth. Some even develop full-blown postpartum depression in the weeks that follow. Monoamine oxidase A, an enzyme responsible for the breakdown of neurotransmitters like dopamine and serotonin, plays an important role in this condition.


Positron-Emission-Tomography (PET) of a depressive patient without medication (left) with elevated monoamine-oxidase-A-levels (green, yellow, red) and after a six-week-treatment with the monoamine-oxidase-A-inhibitor moclobemid (right).

© Sacher et al., 2011, J Psy Neurosci.

In comparison to healthy women, women who experience postpartum depression present strongly elevated levels of the enzyme in their brains. This was discovered by a Canadian-German research team including Julia Sacher from the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig. Their findings could help in the prevention of postpartum depression and in the development of new drugs for its treatment.

For most women, the birth of their baby is one of the most strenuous but also happiest days in their lives. However, joy and happiness are often followed by fatigue and exhaustion. The vast majority of women experience a temporary drop in mood for a few days after birth.

These symptoms of “baby blues” are not an illness; however, in some cases they can represent early signs of an imminent episode of depression: in 13 percent of mothers, the emotional turmoil experienced after childbirth leads to the development of a full-blown postpartum depression. Postpartum depression is harmful not only to the mother, but also to the baby. It is difficult to treat this condition effectively, as its precise neurobiological causes have remained unidentified to date.

The new study shows that postpartum depression is accompanied by strongly elevated monoamine oxidase A in the brain, particularly in the prefrontal cortex and in the anterior cingulate cortex. In women with postpartum depression, the values recorded were 21 percent higher than those of women who were not plagued by negative feelings after giving birth. Women who did not develop full-blown depression but found themselves crying more often than usual due to depressed mood also presented moderately elevated values.

“Therefore, we should promote strategies that help to reduce monoamine oxidase A levels in the brain, and avoid everything that makes these values rise,” explains Sacher. Such factors include heavy smoking, alcohol consumption and chronic stress, for example when the mother feels neglected and abandoned by her partner and family. “My ultimate goal is to provide women and their families with very concrete lifestyle recommendations that will enable them to prevent postpartum depression,” explains the psychiatrist.

A new generation of long-established drugs could also play an important role in the treatment of postpartum depression in future. Up to now, depressed mothers are mainly given drugs that increase the concentration of serotonin in the brain. However, because monoamine oxidase A breaks down not only serotonin but also other monoamines like dopamine and noradrenaline, a treatment that directly targets monoamine oxidase A could have a higher success rate, particularly in very serious cases: this alternative is provided by selective and reversible monoamine-oxidase- A inhibitors.

“The first monoamine oxidase inhibitors often had severe side effects, for example hypertensive crises, which necessitated adherence to a strict diet,” explains Sacher. “However, the new selective and reversible drugs are better tolerated,” she adds. In the next stage of this research involving clinical trials, the scientists intend to test the effectiveness of these reversible monoamine oxidase A inhibitors in the treatment of postpartum depression.

Because the measurement of this enzyme in the brain requires complex technology, it is not suitable for routine testing. Thus, the researchers are also looking for a peripheral marker of this enzyme that can be detected in saliva or blood.

Four years ago, Julia Sacher and her colleagues at the Centre for Addiction and Mental Health CAMH in Toronto already succeeded in showing that, in the first week postpartum, the concentration of the enzyme monoamine oxidase A in the brain is on average 40 percent higher than in women who had not recently given birth. “The monoamine oxidase A values behave in the opposite way to oestrogen levels. When oestrogen levels drop acutely after childbirth, the concentration of monoamine oxidase A rises. This drastic change also influences serotonin levels, known as the happiness hormone,” explains Dr. Sacher. In most women, the values quickly return to normal. In others, they remain raised – and thereby promote the development of depression.

Contact 

Original publication

 
Julia Sacher, P. Vivien Rekkas, Alan A. Wilson, Sylvain Houle, Leslie Romano, Jinous Hamidi, Pablo Rusjan, Ian Fan, Donna E. Stewart, Jeffrey H. Meyer
Relationship of Monoamine Oxidase A Distribution Volume to Postpartum Depression and Postpartum Crying
Neuropsychopharmacology, 30 July 2014 (doi: 10.1038/npp.2014.190) 

Dr. Julia Sacher | Max-Planck-Institute
Further information:
http://www.mpg.de/8331073/postpartum-depression_monoamine-oxidase-a

Further reports about: Baby Blues Brain Human Postpartum develop dopamine drugs enzyme levels postpartum depression prefrontal cortex

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>