Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modeling sepsis in newborns

Technical achievement will speed the search for better diagnostics, treatments

Sepsis, or bacterial infection of the bloodstream, is a grave, hard-to-diagnose threat in premature newborns in the NICU. Even when it's detected and treated with antibiotics, its inflammatory effects can harm fragile babies' development.

Now, researchers at Boston Children's Hospital have modeled the effects of sepsis on the unique newborn immune system, using mice. They and others have begun using the model to identify diagnostic markers and better treatments.

The new model is described September 6 in the online open-access journal PLOS ONE (available after publication at:

Premature infants typically are kept alive with catheters and intravenous lines that are vital for their care, but that also carry a risk of bloodstream infection, most commonly from the bacterium Staphylococcus epidermidis. Preventive measures can now avoid many of these infections, but those that slip through can be hard to spot and treat.

"When infection occurs, it's hard to detect in newborns, who can't speak and, due to their unique immune systems, tend not to have fevers or show clinical signs," explains Ofer Levy, MD, PhD, of the Division of Infectious Diseases at Boston Children's and senior author on the paper. "There may be irregular breathing or increased heart rate, or the baby may be acting a little 'off,' but these signs are pretty nonspecific. There's a tremendous need for better diagnostics in this field."

Mouse models of intravenous infections in newborns have been lacking, due to the technical challenge of working with tiny newborn mice. With great manual dexterity, Kenny Kronforst, MD, MPH, a clinical Newborn Medicine fellow working in Levy's lab and first author on the paper, was able to inject live S. epidermidis into the tiny animals' jugular veins, simulating what happens when an IV or catheter infection occurs in an hours-old preemie in the NICU.

The findings surprised the team—and gave hope.

"Newborns have traditionally been considered immunologically immature and distinct from adults in their ability to fight off infection," says Kronforst, now an attending physician in neonatology at Lurie Children's Hospital of Chicago. "Through our model, we have shown that there is a robust inflammatory response to bacterial challenge even at the earliest hours of life. Additionally, we were able to reproduce many clinical features of sepsis that we see in human infants. Because of these features, our model is ideal for exploring novel diagnostic and therapeutic possibilities—something we're extremely excited about."

For example, one part of the inflammatory response, also known to occur in human newborns, was increased production of a molecule called Toll-like receptor-2 (TLR2). Levy's team and others are now evaluating TLR2 as a potential biomarker for detecting sepsis, as well as a potential target for treatments to suppress the inflammation.

"We can now try to block TLR2 in our model, to see if we can clear bacteria faster and prevent inflammatory damage," Levy says.

Even when babies with sepsis are treated with antibiotics, the inflammatory response to the infection can be just as harmful. "Infants spend a lot of energy fighting the infection, and the inflammatory response impairs weight gain," says Levy.

Impaired weight gain was also seen in the mouse model. A separate study with the model, presented at last May's Pediatric Academic Society meeting, linked increased TLR2 production with another kind of damage: impaired development of the brain's white matter.

"There's an emerging literature showing that having bacteria in the bloodstream is harmful to the newborn brain, and that the inflammatory response harms the brain even if the infection is cleared," Levy says. "That raises the bar tremendously for detection and treatment."

Levy and his colleagues have been invited to apply for funding to develop new treatments using their mouse model.

The current study was supported by the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institutes of Health. Coauthors were Christy J. Mancuso, MS, Matthew Pettengill, PhD, Jana Ninkovic PhD, Chad Stevens, MS, and Donald Goldmann, MD, all of the Division of Infectious Disease at Boston Children's Hospital; Melanie R. Power Coombs, PhD, Dalhousie University (Halifax, Nova Scotia); Michael Otto, PhD, NIAID; and Carina Mallard, PhD and Xiaoyang Wang, MD, PhD, University of Gothenburg, Gothenburg, Sweden.

Read about the Levy lab's related work on vaccines for newborns in our News Room and blog.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Boston Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Boston Children's, visit:

Erin Tornatore | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>