Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model could lead to improved treatment for early stage Alzheimer’s

01.03.2013
Researchers at the University of Florida and The Johns Hopkins University have developed a line of genetically altered mice that model the earliest stages of Alzheimer’s disease. This model may help scientists identify new therapies to provide relief to patients who are beginning to experience symptoms.
The researchers report their findings in the current issue of The Journal of Neuroscience.

“The development of this model could help scientists identify new ways to enhance brain function in patients in the early stages of the disease,” said David Borchelt, UF professor of neuroscience in the Evelyn F. and William L. McKnight Brain Institute and director of the SantaFe HealthCare Alzheimer's Disease Research Center. “Such therapies could preserve brain function longer and delay the appearance of more severe symptoms that leave patients unable to care for themselves.”

In the early stages of Alzheimer’s disease, people struggle with and fail to learn new games, rules or technologies because their cognitive flexibility decreases. The degenerative disease continues with memory loss and the decline of other brain functions.

The researchers worked with mice that had specially designed gene fragments derived from bacteria and from humans that allowed the investigators to control the production of a small peptide. The peptide, called amyloid beta peptide, is a short chain of amino acids. Accumulations of this particular peptide in the brain as lesions called plaques occur early in the progression of Alzheimer’s disease and seem to trigger the early memory problems.

The team regulated the expression of the peptide using antibiotics — when the animals stopped taking the antibiotic, the peptide-producing gene turned on and caused the mice to develop the plaques found in Alzheimer’s patients. After the mice had developed the Alzheimer pathology, the researchers turned the gene back off and observed that the mice showed persistent memory problems that resemble the early stages of the disease.

“This model may be useful to researchers to test drugs that could help with symptoms of early stage Alzheimer’s disease,” Borchelt said.This research is funded by the National Institute of Neurological Disease and Stroke of the National Institutes of Health, and the SantaFe HealthCare Alzheimer’s Disease Research Center of the University of Florida.

Melissa Lutz Blouin | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>