Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT robotic therapy holds promise for cerebral palsy

25.05.2009
Devices can help children learn to grasp and manipulate objects

Over the past few years, MIT engineers have successfully tested robotic devices to help stroke patients learn to control their arms and legs. Now, they're building on that work to help children with cerebral palsy.

"Robotic therapy can potentially help reduce impairment and facilitate neuro-development of youngsters with cerebral palsy," says Hermano Igo Krebs, principal research scientist in mechanical engineering and one of the project's leaders.

Krebs and others at MIT, including professor of mechanical engineering Neville Hogan, pioneered the use of robotic therapy in the late 1980s, and since then the field has taken off.

"We started with stroke because it's the biggest elephant in the room, and then started to build it out to other areas, including cerebral palsy as well as multiple sclerosis, Parkinson's disease and spinal cord injury," says Krebs.

The team's suite of robots for shoulder-and-elbow, wrist, hand and ankle has been in clinical trials for more than 15 years with more than 400 stroke patients. The Department of Veterans Affairs has just completed a large-scale, randomized, multi-site clinical study with these devices.

All the devices are based on the same principle: that it is possible to help rebuild brain connections using robotic devices that gently guide the limb as a patient tries to make a specific movement.

When the researchers first decided to apply their work to children with cerebral palsy, Krebs was optimistic that it would succeed, because children's developing brains are more plastic than adults', meaning they are more able to establish new connections.

The MIT team is focusing on improving cerebral palsy patients' ability to reach for and grasp objects. Patients handshake with the robot via a handle, which is connected to a computer monitor that displays tasks similar to those of simple video games.

In a typical task, the youngster attempts to move the robot handle toward a moving or stationary target shown on the computer monitor. If the child starts moving in the wrong direction or does not move, the robotic arm gently nudges the child's arm in the right direction.

Krebs began working in robotic therapy as a graduate student at MIT almost 20 years ago. In his early studies, he and his colleagues found that it's important for stroke patients to make a conscious effort during physical therapy. When signals from the brain are paired with assisted movement from the robot, it helps the brain form new connections that help it relearn to move the limb on its own.

Even though a stroke kills many neurons, "the remaining neurons can very quickly establish new synapses or reinforce dormant synapses," says Krebs.

For this type of therapy to be effective, many repetitions are required — at least 400 in an hour-long session.

Results from three published pilot studies involving 36 children suggest that cerebral palsy patients can also benefit from robotic therapy. The studies indicate that robot-mediated therapy helped the children reduce impairment and improve the smoothness and speed of their reaching motions.

The researchers applied their work to stroke patients first because it is such a widespread problem — about 800,000 people suffer strokes in the United States every year. About 10,000 babies develop cerebral palsy in the United States each year, but there is more potential for long-term benefit for children with cerebral palsy.

"In the long run, people that have a stroke, if they are 70 or 80 years old, might stay with us for an average of 5 or 6 years after the stroke," says Krebs. "In the case of cerebral palsy, there is a whole life."

Most of the clinical work testing the device with cerebral palsy patients has been done at Blythedale Children's Hospital in Westchester County, N.Y., and Spaulding Rehabilitation Hospital in Boston. Other hospitals around the country and abroad are also testing various MIT-developed robotic therapy devices.

Krebs' team has focused first on robotic devices to help cerebral palsy patients with upper body therapy, but they have also initiated a project to design a pediatric robot for the ankle.

Among Krebs' and Hogan's collaborators on the cerebral palsy work are Dr. Mindy Aisen '76, former head of the Department of Veterans Affairs Office of Research and Development and presently the director and CEO of the Cerebral Palsy International Research Foundation (CPIRF); Dr. Joelle Mast, chief medical officer, and Barbara Ladenheim, director of research, of Blythedale Children's Hospital; and Fletcher McDowell, former CEO of the Burke Rehabilitation Hospital and a member of the CPIRF board of directors.

MIT's work on robotic therapy devices is funded by CPIRF and the Niarchos Foundation, the Department of Veterans Affairs, the New York State NYSCORE, and the National Center for Medical Rehabilitation Research of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>