Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several methods for early diagnosis of Alzheimer's disease developed by European scientists

15.06.2011
PredictAD is an EU-funded research project that develops objective and efficient methods for enabling earlier diagnosis of Alzheimer's disease. Diagnosis requires a holistic view of the patient combining information from several sources, such as, clinical tests, imaging and blood samples.

"The aim of the PredictAD project is to develop an objective indicator to diagnose Alzheimer's disease at the earliest stage possible. Current diagnostic guidelines emphasise the importance of various biomarkers in diagnostics.

We have developed novel approaches to extract biomarkers from imaging data, electrophysiological data and blood samples, and a unique and clinically useful software tool for integrating all these heterogeneous measurements." says the Scientific Coordinator of the project, Dr Jyrki Lötjönen from VTT Technical Research Centre of Finland.

Magnetic resonance imaging for identifying atrophy

Atrophy in the mediotemporal lobe is a well-known hallmark of Alzheimer's disease. Magnetic resonance imaging is an excellent tool for measuring this tissue loss. In current clinical practice, images are interpreted mostly only by visual inspection but there is a great need for objective measurements.

PredictAD has developed several methods to meet this need. "We have managed to develop efficient tools for measuring the size of the hippocampus, the atrophy rate of the hippocampus, and two modern approaches based on comparing patient data with previously diagnosed cases available in large databases." says the leader of the imaging biomarkers work-package, professor Daniel Rueckert from Imperial College London. Positron emission tomography (PET) imaging is another imaging technology studied in the project. A novel tracer developed recently especially for diagnostics of Alzheimer's disease provides promises for very early diagnosis of the disease.

Detecting changes in the electrophysiology of the brain

Alzheimer's disease is known to affect the electromagnetic activity of the brain. In PredictAD, we have studied the performance of a novel technology, transcranial magnetic stimulation (TMS) combined with electroencephalographic (EEG) measures in detecting the disease. The strength of TMS/EEG is that it allows direct and non-invasive perturbation of the human cerebral cortex without requiring the subject's collaboration. Our study has shown significant changes in Alzheimer's patients compared with healthy aging people.

Non-invasive techniques to find biomarkers of the disease

Molecular level biomarkers are currently under extensive studies in Alzheimer's research. Many biomarkers, such as tau proteins and b-amyloid 42, measured from the cerebrospinal fluid (CSF), the liquid surrounding the cerebral cortex, have been found to be strongly related with the disease. One major challenge of these biomarkers is that taking samples from CSF is an invasive measurement limiting their usability in early diagnostics. Blood samples would be an excellent source for detecting Alzheimer's disease as blood sampling is not considered an invasive technique. PredictAD has studied the role of metabolomic and protein compounds in Alzheimer's disease from blood samples. The preliminary results reveal several promising compounds.

Methodology for measuring the state of the patient

Currently, clinicians make the final diagnosis by combining heterogeneous measurements with information from interviews of the patient and relatives. This process involves subjective reasoning and requires strong expertise from the clinicians. Modern hospitals have huge data reserves containing hidden information that could be utilised in diagnostics by systematic mathematical modelling.

PredictAD has designed a totally novel approach for measuring objectively the state of the patient. This decision support system, developed in close collaboration with clinicians, compares patient measurements with measurements of other patients in large databases and provides at the end an index and graphical representation reflecting the state of the patient. "The PredictAD tool provides a new option to support decision making", says Prof. Hilkka Soininen from the University of Eastern Finland, leading the clinical validation of the project.

Possibilities for significant savings in health costs

Prof. Gunhild Waldemar from Copenhagen University Hospital, Rigshospitalet emphasises the importance of the Alzheimer's disease research: "Successful, early diagnostics combined with the novel drugs under development and early psychosocial care may delay the institutionalisation of patients, reducing suffering and the costs to the society. It has been calculated that delaying the onset of the disease by five years would halve all costs of Alzheimer's disease and delaying onset and progression by only one year would reduce the number of Alzheimer's cases by about 10%."

"Diagnostic companies like GE Healthcare and pharmaceutical companies are investing heavily in this area. Commercialisation of the results is already ongoing in PredictAD", says Dr Lennart Thurfjell from GE Healthcare Ltd leading the activities of dissemination and exploitation.

Dementia has been recently identified as a health priority both in Europe and in the USA. Alzheimer's disease, the most common cause of dementia, alone accounts for costs equivalent to about 1% of the gross domestic product (GDP) of the whole world and the number of persons affected will double in the next 20 years. Early diagnostics plays a key role in solving the problem because treatments of this irreversible disease should be started in an early phase to be efficient. Various treatments are currently under extensive development. So far, the lack of systematic and objective ways to identify persons for treatments has been apparent.

With a consortium of top-level European research and industry partners, the PredictAD project takes an important step towards an early approach to Alzheimer's disease prediction and management. Public and private partners from eight research, academic, industrial and medical organisations from five different European countries form the consortium: VTT (Finland), GE Healthcare (UK), Nextim Ltd. (Finland), University of Eastern Finland (Finland), Imperial College London (UK), Karolinska Institutet (Sweden), University of Milan (Italy) and Copenhagen University Hospital, Rigshospitalet (Denmark).

PredictAD is organising a workshop in Kuopio, Finland, on June 15, 2011. The purpose of the workshop is to present and discuss results of the PredictAD project and recent innovations for the early diagnosis of Alzheimer's disease.

Jyrki Lötjönen | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>