Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meningitis model shows infection's sci-fi-worthy creep into the brain

29.09.2015

Scientists at Duke Medicine are using transparent fish to watch in real time as Cryptococcal meningitis takes over the brain. The resulting images are worthy of a sci-fi movie teaser, but could be valuable in disrupting the real, crippling brain infection that kills more than 600,000 people worldwide each year.

Airborne cells of Cryptococcus make their way into our lungs practically every day -- unwelcome guests, but of little consequence for those with healthy immune systems. But for those with compromised immunities, whether by HIV infection or cancer treatment, a resulting Cryptococcal meningitis infection can quickly become deadly.


A zebrafish larva is infected with Cryptococcal meningitis and photographed under a microscope. Scientists observe as the infection (visible red orbs) takes over the brain. Macrophages (shown in blue) attack the infection as it travels through green blood vessels and throughout surrounding tissue. The eyes of the fish are located at the top- and bottom-left corners of the image.

Credit: Stefan Oehlers/Duke Medicine

To be able to target the infection with medications in the future, researchers need to know more about how the organism (technically a yeast), moves from the lungs into the blood stream and through the blood-brain barrier. So they injected the organism into microscopic zebrafish larvae, which have clear bodies, and watched the infection take hold.

The newly developed fish model is described in mBio, a journal of the American Society of Microbiology

"What's impressive is that, unlike in a mouse or rabbit, you can actually see the organism producing disease in the live animal," said John R. Perfect, M.D., chief of the division of infectious diseases at Duke University School of Medicine. "Day-by-day, it's growing and moving throughout the body. You can't see this anywhere else."

A video shows a transparent larva's body as Cryptococcus fungi, made red by a fluorescent tracer, moves through tissue, blood vessels and into the brain. Blue macrophages chase and gobble up some of the red infection as it spreads through and around green blood vessels.

Using a zebrafish to observe the process of infection offers a small vertebrate animal with an immune system somewhat similar to a human's, Perfect said. Because the fish are tiny and easy to reproduce, they cost less and are easier to study than a mouse or larger mammal.

The larvae are also permeable to small molecules, which will allow scientists to batch-test different drug compounds against the infection relatively quickly and easily, said co-author David Tobin, Ph.D., assistant professor in molecular genetics and microbiology and immunology at Duke.

"This model will allow researchers to screen the whole organism while it is living with an infection," Tobin said. "It will allow us to screen libraries of drug compounds relatively quickly. We can also develop and test mutant strains of Cryptococcus in these larvae. This can teach us which factors play a role in infection and those could be therapeutic targets in the future."

Tobin also uses zebrafish to study bacteria closely related to those that cause tuberculosis, and findings from this model have been applied to understanding human disease.

There are some drawbacks to studying these infections in fish -- their body temperatures are cooler and they lack lungs, which is where Cryptococcus enters the human body, Perfect said. But the fish offer a starting point to create leads that scientists can then investigate further in more complex mammals.

"Our hope is that by creating this system, we can continue our own investigations into other harmful organisms, and that other scientists worldwide can adapt our zebrafish model to investigate the diseases that are priorities in their communities," Perfect said.

###

In addition to Perfect and Tobin, study authors include Jennifer L. Tenor; Stefan H. Oehlers; and Jialu L. Yang.

The study was sponsored by the Duke University Center for AIDS Research (CFAR), the National Institutes of Health (5P30 AI064518; 1DP2-OD008614; AI73896; AI93257), the Australian National Health and Medical Research Council, a Mallinckrodt Scholar Award, a Searle Scholar Award, the Vallee Foundation, and a Medicine Research Collaboration Award.

Media Contact

Samiha Khanna
samiha.khanna@duke.edu
919-419-5069

 @Duke_Medicine

http://www.dukemednews.org 

Samiha Khanna | EurekAlert!

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>