Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring Metabolism Can Predict the Progress of Alzheimer's with 90% Accuracy

Metabolic studies could lead to new therapies, says a TAU researcher
When it comes to Alzheimer's disease, scientists usually — and understandably — look to the brain as their first center of attention. Now researchers at Tel Aviv University say that early clues regarding the progression of the disease can be found in the brain's metabolism.

In very early stages of the disease, before any symptoms appear, metabolic processes are already beginning to change in the brain, says PhD candidate Shiri Stempler of TAU's Sackler Faculty of Medicine. Working with Profs. Eytan Ruppin and Lior Wolf of TAU's Blavatnik School of Computer Science, Stempler has developed predictor models that use metabolic information to pinpoint the progression of Alzheimer's. These models were 90 percent accurate in predicting the stage of the disease.

Published in the journal Neurobiology of Aging, the research is the first step towards identifying biomarkers that may ensure better detection and analysis of the disease at an early stage, all with a simple blood test. It could also lead to novel therapies. "We hope that by studying metabolism, and the alterations to metabolism that occur in the very early stages of the disease, we can find new therapeutic strategies," adds Stempler.

Interrupting a regulated process

Metabolism describes a set of chemical reactions in cells which sustain life by controlling processes such as growth and reproduction. It is also responsible for providing energy to the body. To delve deeper into the connection between metabolism, brain functioning, and Alzheimer's disease, the researchers used data collected from the hippocampus region of the brain. Controlling memory and learning, this region of the brain is damaged as Alzheimer's progresses.

Based on the number of metabolic genes found in the neurons and surrounding tissue, they built a predictive model which relates abnormalities in these genes to the progression of the disease. Out of almost 1500 genes, the researchers were able to select 50 genes that were the most predictive of Alzheimer's, says Stempler, noting that in Alzheimer's patients these genes are either over or under expressed, meaning that there are either too many or too few.

When they compared the findings from these 50 genes among Alzheimer's patients, healthy patients, and primates (including chimpanzees and rhesus monkeys), the researchers discovered that in all but the Alzheimer's group, the number of the specific genes was tightly limited, with little difference in their number between individuals among each of the species, she explains. This implies that these genes are significant to normal brain functioning, and their strict regulation in healthy patients is compromised by Alzheimer's disease.

Exploring new pathways

Whether metabolic changes are a cause of the disease or merely a symptom remains a topic for future study. But the discovery of this connection is encouraging. "The correlation between metabolic gene expression and cognitive score in Alzheimer's patients is even higher than the correlation we see in medical literature between beta amyloid plaques – found in deposits in the brains of Alzheimer's patients — and cognitive score, pointing to a strong association between cognitive decline and an altered metabolism," Stempler says.

Next the researchers will try to identify biomarkers in the blood that are associated with these metabolic changes. They may lead to detection and information about the disease's progression with an easy and non-invasive blood test. And as their work advances, Stempler hopes to develop therapeutic strategies that are based around these alterations in the metabolic network to help Alzheimer's patients, such as medications that can re-introduce strict regulation over gene expression. They believe that the research is a promising direction for Alzheimer's research.

George Hunka | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>