Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring Metabolism Can Predict the Progress of Alzheimer's with 90% Accuracy

08.11.2012
Metabolic studies could lead to new therapies, says a TAU researcher
When it comes to Alzheimer's disease, scientists usually — and understandably — look to the brain as their first center of attention. Now researchers at Tel Aviv University say that early clues regarding the progression of the disease can be found in the brain's metabolism.

In very early stages of the disease, before any symptoms appear, metabolic processes are already beginning to change in the brain, says PhD candidate Shiri Stempler of TAU's Sackler Faculty of Medicine. Working with Profs. Eytan Ruppin and Lior Wolf of TAU's Blavatnik School of Computer Science, Stempler has developed predictor models that use metabolic information to pinpoint the progression of Alzheimer's. These models were 90 percent accurate in predicting the stage of the disease.

Published in the journal Neurobiology of Aging, the research is the first step towards identifying biomarkers that may ensure better detection and analysis of the disease at an early stage, all with a simple blood test. It could also lead to novel therapies. "We hope that by studying metabolism, and the alterations to metabolism that occur in the very early stages of the disease, we can find new therapeutic strategies," adds Stempler.

Interrupting a regulated process

Metabolism describes a set of chemical reactions in cells which sustain life by controlling processes such as growth and reproduction. It is also responsible for providing energy to the body. To delve deeper into the connection between metabolism, brain functioning, and Alzheimer's disease, the researchers used data collected from the hippocampus region of the brain. Controlling memory and learning, this region of the brain is damaged as Alzheimer's progresses.

Based on the number of metabolic genes found in the neurons and surrounding tissue, they built a predictive model which relates abnormalities in these genes to the progression of the disease. Out of almost 1500 genes, the researchers were able to select 50 genes that were the most predictive of Alzheimer's, says Stempler, noting that in Alzheimer's patients these genes are either over or under expressed, meaning that there are either too many or too few.

When they compared the findings from these 50 genes among Alzheimer's patients, healthy patients, and primates (including chimpanzees and rhesus monkeys), the researchers discovered that in all but the Alzheimer's group, the number of the specific genes was tightly limited, with little difference in their number between individuals among each of the species, she explains. This implies that these genes are significant to normal brain functioning, and their strict regulation in healthy patients is compromised by Alzheimer's disease.

Exploring new pathways

Whether metabolic changes are a cause of the disease or merely a symptom remains a topic for future study. But the discovery of this connection is encouraging. "The correlation between metabolic gene expression and cognitive score in Alzheimer's patients is even higher than the correlation we see in medical literature between beta amyloid plaques – found in deposits in the brains of Alzheimer's patients — and cognitive score, pointing to a strong association between cognitive decline and an altered metabolism," Stempler says.

Next the researchers will try to identify biomarkers in the blood that are associated with these metabolic changes. They may lead to detection and information about the disease's progression with an easy and non-invasive blood test. And as their work advances, Stempler hopes to develop therapeutic strategies that are based around these alterations in the metabolic network to help Alzheimer's patients, such as medications that can re-introduce strict regulation over gene expression. They believe that the research is a promising direction for Alzheimer's research.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>