Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major step toward an Alzheimer's vaccine

16.01.2013
A team of researchers from Université Laval, CHU de Québec, and pharmaceutical firm GlaxoSmithKline (GSK) has discovered a way to stimulate the brain's natural defense mechanisms in people with Alzheimer's disease.

This major breakthrough, details of which are presented today in an early online edition of the Proceedings of the National Academy of Sciences (PNAS), opens the door to the development of a treatment for Alzheimer's disease and a vaccine to prevent the illness.

One of the main characteristics of Alzheimer's disease is the production in the brain of a toxic molecule known as amyloid beta. Microglial cells, the nervous system's defenders, are unable to eliminate this substance, which forms deposits called senile plaques.

The team led by Dr. Serge Rivest, professor at Université Laval's Faculty of Medicine and researcher at the CHU de Québec research center, identified a molecule that stimulates the activity of the brain's immune cells. The molecule, known as MPL (monophosphoryl lipid A), has been used extensively as a vaccine adjuvant by GSK for many years, and its safety is well established.

In mice with Alzheimer's symptoms, weekly injections of MPL over a twelve-week period eliminated up to 80% of senile plaques. In addition, tests measuring the mice's ability to learn new tasks showed significant improvement in cognitive function over the same period.

The researchers see two potential uses for MPL. It could be administered by intramuscular injection to people with Alzheimer's disease to slow the progression of the illness. It could also be incorporated into a vaccine designed to stimulate the production of antibodies against amyloid beta. "The vaccine could be given to people who already have the disease to stimulate their natural immunity," said Serge Rivest. "It could also be administered as a preventive measure to people with risk factors for Alzheimer's disease."

"When our team started working on Alzheimer's disease a decade ago, our goal was to develop better treatment for Alzheimer's patients," explained Professor Rivest. "With the discovery announced today, I think we're close to our objective."

In addition to Rivest, the study's co-authors are Jean-Philippe Michaud, Antoine Lampron, Peter Thériault, Paul Préfontaine, Mohammed Filali, and nine researchers from GlaxoSmithKline.

Source:

Jean-François Huppé
Media Relations
Université Laval
418-656-7785
Jean-Francois.Huppe@dc.ulaval.ca
Pascale St-Pierre
Media Relations
CHU de Québec
418-525-4387
Pascale.St-Pierre@chuq.qc.ca

Jean-François Huppé | EurekAlert!
Further information:
http://www.ulaval.ca

More articles from Health and Medicine:

nachricht An experimental Alzheimer's drug reverses genetic changes thought to spur the disease
04.05.2016 | Rockefeller University

nachricht Research points to a new treatment for pancreatic cancer
04.05.2016 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>